Journal of Computational Physidé$3,376-433 (2000) ®
]
doi:10.1006/jcph.2000.6569, available online at http://www.idealibrary.col DE &l.

A High-Resolution Numerical Method for a
Two-Phase Model of Deflagration-to-
Detonation Transition

Keith A. Gonthief* and Joseph M. Powelrs

*Department of Mechanical Engineering, Lamar University, Beaumont, Texas 7fD&partment
of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556
E-mail: gonthierka@hal.lamar.edu, powers@nd.edu

Received July 22, 1999; revised June 9, 2000

A conservative, upwind numerical method is formulated for the solution of a
two-phase (reactive solid and inert gas) model of deflagration-to-detonation transi-
tion (DDT) in granular energetic solids. The model, which is representative of most
two-phase DDT models, accounts for complete nonequilibrium between phases and
constitutes a nonstrictly hyperbolic system of equations having parabolic degenera-
cies. The numerical method is based on Godunov’s methodology and utilizes a new
approximate solution for the two-phase Riemann problem for arbitrary equations
of state. The approximate solution is similar to the Roe-type Riemann solution for
single-phase systems. The method is able to accurately capture strong shocks as-
sociated with each phase without excessive smearing or spurious oscillations and
can accurately resolve fine-scale detonation structure resulting from interaction be-
tween phases. The utility of the method is demonstrated by comparing numerical
predictions with known solutions for three test cases: (1) a two-phase shock tube
problem; (2) the evolution of a steady compaction wave in a granular material result-
ing from weak piston impact¢100 m/s); and (3) the evolution of a steady two-phase
detonation wave in an energetic granular material resulting from weak piston impact.
The nominally second-order accurate numerical method is shown to have global con-
vergence rates of 1.001 and 1.670 for inerttest cases with (case 1) and without (case 2)
discontinuities, respectively. For the reactive test case having a discontinuity (case 3),
aconvergence rate of 1.834 was predicted for coarse grids that seemed to be approach-
ing the expected value of unity with increasing resolutios.2000 Academic Press

1. INTRODUCTION

In this paper we give a detailed description of the numerical method first used by Gont|
and Powers [21] to simulate deflagration-to-detonation transition (DDT) in granular en
getic solids. This and other research studies on DDT have largely been motivated by conc
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FIG. 1. Schematic of a piston-induced two-phase detonation.

over the increased sensitivity of damaged high explosives and propellants to mechanice
pact. Experiments have shown that weak mechanical shagl2(GPa) is often sufficient to

initiate detonation in granulated energetic material through various mechanisms of hot-
formation [34, 36, 53], whereas only strong shockd @ GPa) provide sufficient energy to
initiate detonation in cast material. Here, we first briefly introduce the physical proble
focusing on issues relevant to the numerical solution of two-phase DDT models, and-
describe a new high-resolution numerical method for accurately solving these models

Figure 1 shows a simple schematic of a paradigm problem for the initiation of detona
in damaged high explosives by weak, planar mechanical shock. This problem, which is
characterized by experiments [36, 53], involves the low-velocity impact of a moving pist
having velocityv, ~ 100 m/s, with a stationary bed of granular explosive. In this figur
transition to detonation, which results from a complex, not well-understood sequenc
physical events, has already occurred. The resulting detonation wave, composed of
lead shock followed by a thick reaction zone, is propagating to the right at §pestere
D > vy, and is supersonic with respect to both the ambient gas and the solid. As sh
by Gonthier [22], the lead shock may be in the gas and/or solid depending on the relz
rates of the various physical processes occurring within the reaction zone structure;
processes will be discussed in detail. Typically, the shocks are modeled as discontint
since the length scales associated with diffusive processes, which define a shock stru
are thin compared to length scales associated with reaction and other relaxation proce
Adiabatic compression of the ambient material by the lead shock and compaction-indt
dissipation provide sufficient energy to initiate chemical reaction. Due to reaction, s
particle mass, momentum, and energy are converted into gas mass, momentum, and e
This conversion process sustains propagation of the wave through the material by mee
acoustic energy transmission from the point of local reaction, through the subsonic re
of the reaction zone, and to the lead shock. At the end of the reaction zone, all of the so
completely consumed by reaction. The reaction rate determines both the time require
complete reaction and the length of the reaction zone; typical reaction timé&s @res)
and typical reaction zone lengths a@e(1 mm).

To gain better understanding of combustion in porous solids and DDT, a number of t
phase continuum models have been developed [3, 6, 8, 13, 35, 41, 44]. The models are
as coupled time-dependent partial differential equations (PDEs) which track the evolutic
mass, momentum, and energy of an inert gas and reactive solid particles. For mathem
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closure, some models include an additional PDE to account for the dynamic compactio
the solid particles [3, 6, 35, 44], while others use an algebraic stress relation to accour
compaction [8]. Physical processes accounted for by most models include (1) convet
transport in both the gas and solid, (2) mass, momentum, and energy transfer from the
to the gas due to chemical reaction, (3) momentum and energy exchange between th
and the solid due to drag interaction, (4) thermal energy exchange between the gas ar
solid due to convective heat transfer, and (5) material compaction due to a stress imbal
between the gas pressure, the solid pressure, and an intragranular stress. Though v
two-phase DDT models have common features, they often differ in the functional form:
the evolution equations. Some of the relevant differences are discussed in detail by Po
et al.[44], and more recently by Bdzdt al. [6] and Saurel and Abgrall [58].

One relevant difference concerns the inclusion of nonconservative “nozzling” terms
the gas and solid momentum and energy equations which are proportional to the sf
derivative of solid volume fraction. Some models include these terms [3, 35], whereas otl
exclude them [8, 44]. Inclusion of such terms introduces additional asymmetry into a mo
which in principle should be indifferent to the description of individual phases. The prime
rationale for including nozzling terms, which are constructed in a nonuniqgue manner, i
ensure that another asymmetry, known as a dynamic compaction model, identically sati
the strong form of the second law of thermodynamics [6]; plausibility arguments that rel
the behavior of the nozzling terms to one-dimensional flow in a variable cross-sectic
area duct are also given.

While we find no fault in the rationale given in Ref. [6], we exclude nozzling terms |
our model, and we offer the following arguments for doing so. First, no rigorous mict
scale justification for either the inclusion or the exclusion of nozzling terms curren
exists. Consequently, all current multiphase flow models remain open to such scru
Second, as noted by Powessal. [44], satisfaction of the strong form of the second law
while appealing, may be overly restrictive. Even if dynamic compaction induces a decre
in entropy, there may be sufficient compensation from competing dissipative processe
guarantee satisfaction of the more general weak form of the second law, which only reqt
a global increase in entropy. Third, as noted in Ref. [6], nozzling does not significar
affect low-pressure compaction waves, a key ingredient for DDT, becoming less impor
as pressure increases. This result suggests that nozzling may play a small role in the
process, though there is some belief that nozzling could play an important role in low-sg
gas permeation scenarios [1]. We also recognize that its role under detonation conditio
not currently well characterized. Our results without nozzling have shown good agreen
with existing experimental DDT [22] and compaction wave [43] data. Fourth, we avc
mathematical and numerical difficulties in the analysis of shocks associated with mo
having a nonconservative form. Such difficulties are often addressed by simply grouy
the nonconservative terms together with algebraic source terms and proceeding in a m:
similar to what will be done here (cf. [58]), albeit with slightly modified source terms. W\
also note that, in contrast to what is stated in Refs. [50, 58], the exclusion of nozzling te
is not necessary to retain hyperbolicity of our model, as similar models containing nozz|
terms are known to also be hyperbolic [6, 15]. So, while a definitive argument for nozzl
remains to be found, the numerical technique given here can be applied in either case
the predicted results will be similar.

There are a number of difficulties in numerically solving two-phase DDT models tt
stringently test the capabilities of the method. First, the numerical method must be
pable of capturing strong shocks in each phase with minimal numerical diffusion &
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dispersion. This requirement is especially important for two-phase DDT simulations si
such numerical artifacts can substantially affect local phase interaction processes, res|
in severe numerical inaccuracies. Second, the numerical method must be capable of
dling mathematical stiffness, which arises due to the disparate time scales associatec
both gas and solid convection, and phase interaction processes. For instance, gas an
acoustic speeds and particle speeds can differ by an order of magnitude, and the ra
phase interaction processes can differ by several orders of magnitude. This problen
partly motivated the development of reduced two-phase DDT models based on asymg
analyses [30]. Third, the numerical method must be capable of handling a local los
hyperbolicity, as most current two-phase DDT models possess singularities for which
equations become parabolic [15, 21]. As discussed later, the physical implications of tl
singularities are unclear, but the loss of hyperbolicity results in numerical instabilities t
must be suppressed. Last, the numerical method must accommodate nonideal equati
state for both the gas and the solid to characterize their thermodynamic behavior unde
extreme conditions of detonation. The numerical method formulated in this paper sati
each of these requirements.

Most commonly used numerical methods for simulating DDT are based on either c
ventional method of lines (MOL) or MacCormack predictor/corrector techniques, relyi
on explicitly added artificial viscosity to capture shocks and maintain humerical stabi
[3, 4, 8, 46, 54]. Itis likely that this added viscosity reduces the ability of such methods
accurately resolve fine-scale detonation structure due to excessive numerical smearing
thermore, the optimal amount of artificial viscosity needed to reasonably capture shoc
largely problem-specific. Though several modern high-resolution upwind numerical me
ods have been developed and applied to dilute two-phase compressible flows [55-57]
the dilute phase is assumed to occupy negligible volume), these methods are not ap
ble to the particle-laden flows of interest here. Saurel and Abgrall [58] recently applie
Godunov-based method using the existing numerical flux functions of Rusanov [51]
Hartenet al. [26] to nondilute compressible flows. Their method is robust, as it can |
applied to both multifluid and multiphase compressible flows, though it generates not
able dispersion for the test cases shown in Ref. [58], likely due to the low accuracy of
Riemann solvers employed.

The work contained in this paper provides two original contributions to the numerit
modeling and theory of two-phase detonation. First, we give a new approximate solu
for the two-phase Riemann problem and use it with Godunov’'s methodology to obt
an accurate numerical method for computing DDT. In addition to increased computatic
efficiency, the use of an approximate solution is necessitated by the lack of an exact solu
The approximate Riemann solution is formulated following the approach used by Roe
Pike [48] to obtain an approximate Riemann solution for the Euler equations for id
equations of state and that used by Glaister [18] to obtain an approximate solution
nonideal equations of state. Consequently, the method formulated in this paper ha:
shock resolution property common to Roe-type solvers and is applicable to general
and solid equations of state. Second, based on detailed comparisons between nun
predictions and results of a steady, two-phase detonation wave analysis [22], we pr
for the first time the evolution of a two-phasesakdetonation structure, indicating that
the Chapman-Jouguet (CJ) wave speed is not the unique wave speed for a self-propa
two-phase detonation. Together with Ref. [21], which gives predictions of the evolutior
the steady CJ detonation structure identified by Poeeas [45], this work gives the only
known detailed comparison between unsteady numerical predictions and steady-state r
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for two-phase detonation wave structure. Further, these comparisons conclusively shov
all relevant detonation length scales are fully resolved, in contrast to most published w
in this area, which is underresolved.

The plan of the paper is as follows. We first give the model equations and perform a ¢
acteristic analysis to determine the mathematical framework needed for the constructic
the approximate Riemann solution. Next, we briefly discuss the two-phase Riemann p
lem and obtain an exact solution for the linearized Riemann problem. Based on this e
solution, we then formulate an approximate solution valid for arbitrary initial data. We gi
a technique for suppressing numerical instabilities associated with a loss of hyperboli
and summarize the techniques used for increasing both the spatial and the temporal acc
of the method and for the coupling of the Godunov-based method with a standard ordi
differential equation (ODE) solver to account for the influence of inhomogeneous phase
teraction terms. Last, we illustrate the performance of the method based on detailed con
isons between numerical predictions and known theoretical solutions for granular energ
solids, and we quantify its convergence rate for both continuous and discontinuous soluti

2. MATHEMATICAL MODEL

The model adopted for this work is a variant of the unsteady, two-phase continuum mc
formulated by Powerst al.[44, 45]. As discussed later, we have modified their model t
include an additional evolution equation for an ignition variable and have incorporated
intragranular stress relation that better describes dynamic compaction of granular explo
[43]. The model assumes the existence of reactive, spherical solid particles and an iner
both having fixed composition, and further assumes that both phases are compres:
all intraphase diffusive transport is negligible, body forces are negligible, each phas
in complete nonequilibrium with the other, and the two-phase flow is one-dimensiona
a macroscopic sense. The model is representative of other two-phase continuum m
commonly used to predict detonation in granulated material [3, 8] and is able to pre
most experimentally observed features of DDT [22].

The two-phase model equations are given by the following:
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In these equations, the subscripts “1” and “2” denote quantities associated with the
and solid, respectively. Quantities labeled with subsaripte associated with the ambi-
ent state. The independent variables are tiraed positionx. Dependent variables are as
follows: the phase density; (i = 1, 2), defined as the mass of phasper unit volume
occupied by that phase; the phase pres&ir¢he phase temperatufig; the particle ve-
locity u;; the specific internal energy; the volume fraction; ; the radius of the spherical
solid particles ; the number of particles per unit volumethe intragranular stresk; and
the ignition variabld . In Egs. (2.1)—~(2.9)H (I — liy) is the Heaviside unit step function,
andlig, a, m, B, h, uc, ki, andT, are constant parameters, which are described belo
Equations (2.1)—(2.16) constitute a system of 16 equations in 16 unknowns; thus, the
tem of equations is mathematically closed and, in principle, can be solved provided
appropriate initial and boundary conditions are supplied.

Equations (2.1), (2.2), and (2.3) are evolution equations for the mass, momentum,
total energy of the gas. Equations (2.4), (2.5), and (2.6) are evolution equations for the n
momentum, and total energy of the solid. Equations (2.7)—(2.9) are evolution equation:
the solid volume fraction, the particle number density, and the ignition variable, respectiv

The forcing terms in Egs. (2.1) and (2.4) account for the exchange of mass from
solid to the gas due to combustion. Here, mass exchange is modeled as a single, irreve
procesgsolid — inert ga3, and all chemical reaction is assumed to occur on the partic
surface. Combustion initiation occurs foe- 1,4, wherelig is a constant ignition parameter.
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The combustion rate is modeled by a burn law which depends upon the gas pressure. V
for the combustion rate parametarsandm are typically correlated to match strand burn
rate data [4].

The forcing terms in Eqgs. (2.2) and (2.5) account for two forms of momentum exchat
between the gas and the solid. First, the gas is gaining that momentum associated wit
solid which is being converted into gas due to combustion. Second, there is an exchani
momentum due to solid particle—gas drag interaction. The drag interaction is modeled
drag law which states that the drag is proportional to the difference in velocity between
phases, and inversely proportional to the particle radius. In the draglsadefined as a
drag coefficient which gives the time scale for velocity equilibration between the phase

The forcing terms in Egs. (2.3) and (2.6) account for the exchange of energy betweer
gas and the solid. Energy exchange associated with combustion, and with particle-gas
work, is accounted for, as is thermal energy exchange between the gas and the solid
thermal energy exchange rate is assumed to be proportional to the temperature differ
between the gas and the solid, and inversely proportional to the cube root of the par
radius; hereh is defined as a heat transfer coefficient which gives the time scale for thert
equilibration between the phases.

Equation (2.7) is a dynamic compaction equation governing changes in solid volu
fraction due to both compaction and combustion of the granular material. This equa
predicts that, in the absence of combustion, the solid volume fraesiomill equilibrate
to a value such that the solid pressuRe, equals the sum of the gas pressuPg, and
the intragranular stresd,; the equilibration rate is governed by the parametgrwhich
is referred to as the compaction viscosity. The use of this equation was first propose
Baer and Nunziato [3]. Though this equation is not standard in all multiphase modeli
it does allow the modeling of rate-dependent material compaction, which is known to
important in the evolution of detonation in granulated material. Additionally, the use of tl
equation ensures that the characteristic wave speeds associated with the model equ
are real [42—-44], and that solutions of the governing PDEs are hyperbolic waves.
characteristic wave speeds of some two-phase models, particularly models which as:
pressure equilibrium between the phases, have been shown to be imaginary; the m
are thus unable to properly model discontinuous solutions as the initial-value probler
ill-posed [14, 47].

Equation (2.8) expresses that the total number of particles in the system is consel
Though not considered here, it is possible to model the break-up of particles by incluc
an appropriate inhomogeneous term in this equation.

Equation (2.9) is alad hocevolution equation for the ignition variable For this study,

0 <1 <1, wherel, = 0 for the ambient state, anig; = 0.5. This equation is used to
model the observed induction period occurring prior to the onset of vigorous combustio
piston-initiated DDT experiments [4, 36, 53]. The forcing term in this equation models t
ignition variable as an increasing function of pressure and temperature of the gas and ¢
Consequently, in agreement with experiments, higher temperatures and pressures re:
a decrease in the induction time. In this equatignand T, are ignition rate constants.
Similar equations have been used in other two-phase combustion models as “switche:s
controlling the amount of chemical energy released by combustion during the induct
period [5, 46, 60].

Equation (2.10) is an expression for the intragranular stress, which was used by Po
et al. [43] to analyze steady compaction waves in granular HMX. Equation (2.11) is t
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definition of the local particle number density expressed in terms of the solid volu
fraction and the particle radius, and Eqg. (2.12) is a mixture saturation condition (i.e.,
voids are present within the mixture). Equations (2.13) and (2.14), and Eqgs. (2.15)
(2.16) are functional dependencies for the thermal and caloric equations of state for the
and the solid, respectively. At this juncture, we choose not to specify exact forms for
state relations as the formulation of the numerical method in the following section does
require us to do so. Furthermore, different state relations are used for various problen
this paper, the exact forms of which are given where appropriate.

As discussed by Powees al.[44, 45], the phase interaction terms have been construct
such that (1) the total mass, momentum, and energy of the gas—solid mixture are conse
(2) the ambient state of the material is an equilibrium state; and (3) some analytical simpli
is retained. Additionally, the drag and thermal interaction terms have been constructe
guarantee a nonnegative change in mixture entropy in accordance with the strong
of the second law of thermodynamics. The combustion and compaction terms may u
certain circumstances induce negative entropy changes, thus violating the strong form ¢
second law, though the less restrictive form may remain satisfied as previously discus
Despite their relative simplicity, itis shown in Ref. [45] that these forms do predict the sa
trends as more complicated empirical relations.

Equations (2.13)—(2.16) can be used to define expressions for the gas souna:gpee
and the solid sound speet}, To this end, we solve Egs. (2.14) and (2.16) Terand T,
respectively, and substitute the results into Egs. (2.13) and (2.15) to obtain the follow
functional dependencies:

P1 = Pi(p1, &1), (2.17)
P2 = Pa(p2, &). (2.18)

The gas and solid sound speed can be expressed in terms of thermodynamic deriv
obtained from these relations,

¢l = P ﬂrl + i , (2.19)
dprls, P2 9p1 |g,
ap21s, P2 902 |g,

wheres; ands; are the specific entropy of the gas and solid, Bndndr"; are the Guheisen
coefficients for the gas and solid, defined by

(2.21)

Finally, the construction of the numerical method requires that Egs. (2.7) and (2.9)
expressedindivergence form. Tothisend, Eq. (2.4) is multipliegbiq. (2.7) is multiplied
by p2¢2, and the two resulting expressions are added to obtain

3 3 P19 3 m
ﬁ[pm%] +8—X[pzu2¢§} =pzﬂt 2(Py— P — f)—2(F>,02¢§aP1 H( —lig). (2.22)

Similarly, Eq. (2.4) is multiplied by, Eq. (2.9) is multiplied by,¢», and the two resulting
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expressions are added to obtain

0 0
ﬁ[,Oz(ﬁz'] + 5[,02¢2U2|]

P11 + Pagp2 — Proghio — Paotpo |2 { T }
=k 1—-1 -
10262 ) [ Pio®10 + Pao2o } exp T1¢1 + Togp
3
- (;)pzwaplmml ). (2.23)

It is noted that spurious wave speeds for discontinuities may be introduced when P
are manipulated in this manner. However, Egs. (2.7) and (2.9) are already in stan
characteristic form; the characteristics are solid particle paths. Furthermore, as discu
in the following section, the corresponding characteristic fields are linearly degener
consequently, discontinuities in these fields propagate at spe€kiis resultis also obtained
by a formal discontinuity analysis based on integral conservation expressions for Egs. (2
and (2.23) [22]. Consequently, these manipulations will not affect the solution.

2.1. Characteristic Analysis

Equations (2.1)—(2.6), (2.8), (2.22), and (2.23) form a quasilinear system of nine fi
order PDEs expressed in divergence form. Using vector notation, these equations cz
compactly expressed by

oq  9f(@)

ot + I a(Q), (2.24)

where
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Here,q € %° is the vector of conserved quantitiés; 9 is the flux vector, ang € %° is
the source vectof{ is the set of real numbers). Botlandg are functions ofj.

We now give a standard analysis applicable to systems of first-order quasilinear P
in two independent variables to determine the classification of the model equations ar
provide the mathematical framework needed for the development of the numerical met
The analysis requires that Eq. (2.24) be expressed in the following nondivergence f
obtained by carrying out the differentiation fofvith respect tox,

99 99
A(Q)— = 2.29
ot TA@ =9, (2.29)
whereA is the 9x 9 flux Jacobian matrix defined by
of
= —. 2.30
% (2:30)

If we denote the components qfandf by g; and f; (j =1,...,9), respectively, theA
is given by

of1/0qr df1/oq --- 9f1/9q9
daf,/0 daf,/0 ... 9fy/0

_ 2/. o[ 2/. 0z 2/. Jo (2.31)
ofg/day dfg/0q --- 0f9/d00

For the construction oA, it is necessary to first expregs, o1, Uz, €1, ¢2, p2, Uz, €, N, and
| as functions ofj. In particular, we have

a7 of (o} a3 1((3{2)2
T . T e A
e O4 P 1-q7/q’ 1 @ & g 2\
oTt 92 Os U6 1(q5)2
= —, = —, u = —, = — — = — s 232
¢2 % 02 o 2T a & % 2\q (2.32)
o
n=gqgs |=—.
o (o7

Given these expressions fpi, €1, p2, ande,, and using the functional dependencies o
Eq. (2.18), the derivatives

P
and —2 (,i'=1,...,9),

9’/ J

P,
aq;

RGN

which are needed for the constructionff can be computed by direct application of the
chain rule:

P oP: d oP: 0

sl =l sa sl 3ol (2:39
9 laj s, P1le 995 lgy €l OGilqy .,

P, 0P, 0 P 0

ol Tl sal  tael w 2.34
ai Qjr('#i) P2 ey gl 97"+ € P2 ai Q77 #i)

96
obtained when the aas and solid state relations are specified

Explicit expressions for the derivativels® |, and §¢t|,,, and §7%e, and §22|,, can be
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In Eg. (2.35), the total enthalpid4$; andH; are defined by

u? P u; P
Hize+ 24—, Hy=e+ 2+ —. (2.36)
2 m 2 p2
Additionally, the following variables are introduced for compactness:
P P
m=c— 1+, m=c— T+ 1)-2. (2.37)
01 P2

Here, it is noted that for a calorically perfect ideal gas and sofig; % andlli =y — 1
(i = 1, 2), wherey, is the specific heat ratio; consequently, = 0. Terms in Eq. (2.35)
corresponding to the derivatives of the mass, momentum, and energy flux components
respect to the conserved mass, momentum, and energy variables for each phase are !
in form to the derivatives given by Glaister [18] for a single-phase system.

The eigenvalues and right eigenvectorsfoin ) (j = 1,...,9) andr(), respectively,
are solutions of the eigenvalue problem

Ard) =0p0), (2.38)
Using matrix notation, the right eigenvalue problem can be concisely expressed as
AR = RA, (2.39)

whereR is the 9x 9 matrix whose columns consist of the right eigenvectors,/faisctthe
9 x 9 diagonal matrix of eigenvalues; i.e.,

2D 0 ... 0

0O A®@ ... 0
R=[r®r?|...[r9], A= : N (2.40)

6 o )L(.9)

The eigenvalues are determined to be

A =u, 2@ =u+c, A¥=u-c,
2@ = Uo, A0 = Us + Cp, 2© = Uy — Cp, (2.41)

AP =up, 2O =up, A9 = uy,

and the corresponding right eigenvectors are determined to be

r® = [1,up, Hy — ¢2/T'1,0,0,0,0,0,0] ", (2.42)
r® =1[1,us +¢1, H1 4+ u1¢1,0,0,0,0,0,0], (2.43)
r® =[1,u; — ¢1, H1 —u16,0,0,0,0,0,0]", (2.44)
r® = [0,0,0,1, Uy, Hp — /T, ,0,0]", (2.45)
r® = [0,0,0, 1, Uz + Ca, Ha + UsCo, ¢2. N/ (02062), 117, (2.46)

r® =10,0,0,1,u; — Cp, Hp — UpCp, 2, N/ (p2¢2), 117, (2.47)
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r — p1L p1m1U2
p2¢2((Uz — U2 — ¢f) " pocpa((Uz — U1)? — CZ)

Hi + uiup — u? T
pn1(Hi + Uy 2 ;) 0.0, 2 .1,0,0| , (2.48)
p2tp2((Uz — Ug)? — c2) ¢l
r® =10,0,0,0,0,0,0,1,0], (2.49)
r® =10,0,0,0,0,0,0,0,1]". (2.50)
The left eigenvectors ok, 1V (j = 1, ..., 9), are solutions of the eigenvalue problem
DA =2DD, (2.51)

Using matrix notation, the left eigenvalue problem can be concisely expressed as
LA = AL, (2.52)

wherelL is the 9x 9 matrix whose rows consists of the left eigenvectors; i.e.,

| D
|2

L= . |. (2.53)
|
The left eigenvectors are given by
1
1D = 2 [(Hy —u?)y,uily, —I'1,0,0,0,0,0,0], (2.54)
1
1 p111C1
1® = = | —(Hy—u2)T14c1(cp —up), €p —usly, Ty, ,0,0,
22 (Hy—ui)l'1+ci(Cr—up), c—uslg, Iy (U — (Ug £ C1))
c
_ P1M1C1 0, } (2.55)
p2¢2(Uz2 — (U1 + C1))
1 p1N1C1
I® = = |—(Hy — u?)I'; 4+ ¢1(cy + up), —C1 — Uy, Ty, — ,0,0,
22 (Hy —uf)T1+ ca(Cp + Up), —Cp — usTy, Iy Uz — (Uz — C1)
c
0£111C1 ’ ’0} (2.56)
p2¢2(Uz — (U1 — C1))
1
1@ = 2 [0,0,0, (Hz — u3)T'2 — 12, U2z, T2, 72/¢2, 0, 0], (2.57)
1
1® = o2 [0,0,0, —(Hz — U3) T2 + Ca(Cp — Up) + 12, C2 — UaDp, T2, —12/¢h2, 0, 0],
2
(2.58)
1
1® = -2 [0,0,0, — (Hz — U3)T2 + C2(Cz + Uz) + 112, —C2 — UzT'2, T2, —112/¢h2, 0, 0],
2

(2.59)
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D =10,0,0,—¢»,0,0,1,0,0], (2.60)
n
H&zg@?mﬁﬁ(m—u@h—é—muﬂb—ﬁwﬂ@mwﬁgmq,Qﬁﬂ
2
1® =[0,0,0,—1,0,0,0,0,1]. (2.62)
Each grouping,r, D (j =1,...,9) is associated with a different mode of wave

propagation. In particulatx, r, D@, (x,r,H®@, and (x,r,)® are associated with the
propagation of entropy waves, forward traveling acoustic waves, and backward trave
acoustic waves in the gas, respectively;r, D@, (1, r, N®, and(x, r, 1)® are associated
with the propagation of entropy waves, forward traveling acoustic waves, and backw
traveling acoustic waves in the solid, respectively; énd, D™, (x,r, H®, and(x, r, H®
are associated with the propagation of infinitesimal disturbances in the volume fraction
particle number density, and the ignition variable, respectively.

As shown in Ref. [22], the gas entropy field, solid entropy field, compaction field, numlt

density field, and ignition field are linearly degenerate sige!)) - r1) = 0for allg, where
Vg =1[3()/d0, ..., 3()/30e). The gas and solid acoustic fields are genuinely nonline:
provided that

%P, 2P,

—21 #0 and —22 # 0,

oug s ous %

whereu; andu, are the specific volumes of the gas and solid. Each of these condition
identical to the convexity requirement for genuinely nonlinear acoustic fields for the EL
equations of gas dynamics [12, 66]. The distinction between degenerate and nonli
characteristic fields is important since discontinuities cannot evolve in degenerate fi
from smooth initial data.

Since the eigenvalues given by Eq. (2.41) are real but not distinct, the model equat
constitute a nonstrictly hyperbolic system provided that the right eigenvectors [Egs. (2.4
(2.49)] are linearly independent. Linear independence requires that the right eigen
tor matrix R be nonsingular or, equivalently, that its inverse exist. InspectioR df
(=L), whose rows consist of the left eigenvectors [Egs. (2.54)—(2.61)], indicates t
the right eigenvectors are linearly independent except at the singular ggiet®d and
Up = U £¢Cy.

For¢, = 0, it is seen that the forward and backward acoustic eigenvectors for the sc
r® andr©® respectively, degenerate (upon proper scaling) into the particle number den
eigenvector ®:

im | 222206 | _ jim | 22?20 | _® (2.63)
-0 n =0 n ’ ’

The time-dependent analysis performed in this study does not formally consider the |
¢» — 0; rather, the singularity is avoided by terminating combustion when the solid volul
fraction reaches a specified minimum value. As such, the solid particles are assumed to
an inert core of small diameter. It is noted that this complete combustion singularity ¢
exist in steady-state models of two-phase detonation [22, 45] and, within the contex
those models, is shown to be inconsequential.
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Foru, = u; + ¢; andu, = u; — ¢y, it is seen that the compaction eigenveatdt de-
generates (upon proper scaling) into the forward and backward acoustic eigenvectors ¢
gas,r@ andr®, respectively:

fim patp2((Uz — up?® — §) rO =@ (2.64)
Up—>U+C; £P1n1 ’ .

im p2¢2((Uz — u1)? — cf) rD| —® (2.65)
Ux—>U1—C1 pP1N1 . .

Inspection of Egs. (2.55) and (2.56) shows that the sonic singularities, correspondin
U, = U =+ ¢4, are removed for; = 0; as already mentioned, this condition results whe
a calorically perfect ideal equation of state is used for the gas. In this K&segduces
to

rg =10,0,0,0,0, ny/(¢2'2), 1,0,0]".

Thus, form; # 0,the model equations constitute a nonstrictly hyperbolic system of equatic
that contain a parabolic degeneracy on the manifglds- 0 andu, = u; £ ¢; in phase
space.

Similar singularities have been identified in the two-phase model proposed by B
and Nunziato [3]; a detailed discussion is given by Embid and Baer [15]. The physi
interpretation of these singular points is unclear. Embid and Baer suggest that the <
singularities arise since, at the pore level, two-phase granular flow is analogous to flo
a moving duct of variable cross-sectional area; a choked flow condition is reached w
the relative flow is sonic. Furthermore, Embid and Baer suggested that nonlinear r
nant interactions between the compaction mader, )", and the related gas acoustic
mode, (1, r, D@ or (i, r, H®, may occur near these singular points; such resonant int
actions are discussed by Isaacson and Temple [29] for a general inhomogeneous s
of conservation laws. Based on this premise, Endticl. [16] and Embid and Majda
[17] developed and analyzed an asymptotic model describing transition to detonatio
granulated reactive solids. It is demonstrated in Ref. [17] that the asymptotic model d
predict the development of resonant gas acoustic hot spots which may influence the |
process.

3. NUMERICAL METHOD

The numerical method is formulated in this section. First, a brief discussion of the tv
phase Riemann problem is given, and an approximate solution is formulated based ol
exact solution of the linearized two-phase Riemann problem. Next, the implementatiol
the approximate solution within the framework of a conservative, upwind numerical al
rithm for solving nonlinear convection in the gas and solid is given. Since this transp
mechanism is responsible for the evolution of discontinuities, it is important that the met|
accurately predict convection effects. Last, the numerical method used to solve the sy
of equations governing local phase interaction processes is formulated, and the nur
cal splitting technique used to couple this method with the upwind method for nonlin
convection is given.
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3.1. The Two-Phase Riemann Problem

We consider the initial-value problem (IVP)

MM o (3.)
q. forx <0

Go(X) ={ - (3.2)
gr forx >0,

whereq e R°, f: %% — R°, x € (—o0, o0), andt € [0, o). The discontinuity in the initial
data is defined by constant statgs,andqgg (q. # qr), Where subscripts andR are used
to indicate the states to the left and right of the discontinuity, respectively. We refer to
IVP defined by Egs. (3.1) and (3.2), which governs nonlinear convection in the gas
solid, as the two-phase Riemann problem.

The various waves that compose a typical solution of the two-phase Riemann problen
showninthex/t diagram of Fig. 2. Here, itis assumed that both the gas and the solid pres:
associated with the statg are higher than that associated with the stpteThe initial
discontinuity is located at = 0, and the solution evolves for> 0. The resulting waves
separate regions having different constant states. Due to the absence of phase inter
processes, physical diffusion, and physical boundaries, the solution has a self-similar f
e.g., it can be expressed as a function of the similarity varighieAssociated with each
phase is a shock, a contact discontinuity (entropy wave), and a rarefaction (expansion w
The shocks, which are driven by the high-pressure statpropagate to the right into the
low-pressure region. The shocks are followed by right-propagating contact discontinui
which separate regions having different entropy. Since the gas and solid entropy are cor
through their respective rarefactions, the gas and solid entropy to the left of their respe
contact discontinuities are associated with the gjatevhile the gas and solid entropy to
the right of the contact discontinuities are associated with the shocked gas and solid s
Also, a discontinuity in particle number density advects with the solid contact discontinu
as does the initial discontinuity in the volume fraction and the ignition variable (if a jump

solid contact discontinuity,
particle number density,

X gas contact volume fraction,
solid gas rarefaction discontinuity ignition variable
1 /
t A ! / gas shock

rarefaction

solid shock

FIG. 2. Sketch of a typical solution of the two-phase Riemann problem.
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the volume fraction and the ignition variable is prescribed across the initial discontinui
Rarefactions, which propagate to the left into the high-pressure region, continuously exy
the gas and solid from the stajg to the constant states to the left of their respective conta
discontinuities.

The order of the gas waves relative to the solid waves for the Riemann problem
change depending upon the statgsandqgr. However, the order of the waves associatet
with each phase is maintained in that the contact discontinuity will always separate
shock and rarefaction. In general, the relative movement of the gas waves with respe
the solid waves poses no special problems, but more work needs to be done to verify
claim; this is beyond the scope of this paper. It is plausible, however, that certain ini
conditions might resultin the evolution of spe@ampoundliscontinuities consisting of (1)
ashockineach phase (e.qg., if both the gas and solid shocks propagate with the same velc
(2) ashockin one phase and a contact discontinuity in the other (e.g., if both the gas shocl
the solid contact discontinuity propagate at the same velocity), or (3) a contact discontin
in each phase (e.g., if both contact discontinuities propagate with the same velocity)
shown by Gonthier [22], each of these compound discontinuities satisfies the second
of thermodynamics for the two-phase mixture and is thus physically admissible; howe
boundary and initial conditions necessary for their evolution are generally unknown. Furt
if the solid contact discontinuity is located within the gas rarefaction wave, then the so
conditionu, = u; — ¢, is locally satisfied at the point where the two waves intersect, ar
the model equations become parabolic (for a nonideal gas). As such, the wave stru
associated with the solution of the Riemann problem may be considerably more com
than illustrated here. In particular, it is noted that for arbitgryandgrg, a single wave will
generally evolve in each characteristic field; such is the case shown in Fig. 2. Howeve
contrast to the results for strictly hyperbolic systems, Keyfitz and Kranzer [31] have shc
that the Riemann problem for a class of nonstrictly hyperbolic systems containing parakt
degeneracies can admit multiple waves in a single characteristic field. A similar result r
hold for Eq. (3.1) for certain values gf andqg. Such anomalies are not accounted for by
the numerical method formulated in this paper.

3.2. Exact Solution of the Linear Two-Phase Riemann Problem

The approximate solution of the two-phase Riemann problem is closely coupled to
exact solution of the linearized two-phase Riemann problem. As such, we first considel
case where the initial datp. andqg in Eq. (3.2) are close to a constant reference state
This assumption will be later relaxed to account for arbit@rnandgg.

Forg, andqgg close tog*, we can linearize Eq. (2.29) by assuming an expansion of tl
form

a(x, t) = q* + €y (X, t) + €2 g (X, ) + - -, (3.3)

where O< € « 1. The following linear system of equations is obtained at the lowest orc
ine:

d
B dw

" 3Q(1)
+eA(Q)—= =0. 3.4
at €A X ( )

Or, sinceeqy = g — q* + O(e?), we have tdO(e)

aq aq
— +AQ@")— = .
5p TA@) S =0, (3.5)
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whereA(q*) is the Jacobian matrix evaluated at the constant reference state. This eque
with the initial data of Eq. (3.2), can be solved using standard techniques applicable to li
hyperbolic systems [33, 65]; the following solution fipix, t) is obtained,

g, =qu+ > (r—vr?

2D <x/t

=0qr— Z wir — vjrY, (3.6)

AD>x/t
where the scalars;. andv;r are components of the vectors
v. =R'q. vr=R'gr. (3.7)
respectively. Furthermore, sinéds constant for this linear problerih= Aq, and we obtain

f(x,t) =f + Z wjr — v;)Ar®

A <x/t

=fr— Z (VJR—ij)A(j)r(j>. (38)

)\(i)zx/t

Following Roe and Pike [48] and Glaister [18, 19], the eigenvector coefficigntand
vir (j =1,...,9)arenotdirectly computed using the definitions givenin Eq. (3.7). Rath
the differences;r — vj_ are approximated by the coefficients’ (j = 1,...,9), which
are determined such that each component of the vector equation

9
s@)=> alr® (3.9)
is satisfied to withinO[5(qg;)?] ~ O(e?), and that each component of the vector equatior

9
sy => a0 (3.10)
j=1

is setisfied to withirO[8 ( f;)?] ~ O(e?), where the difference operator is definediy) =
(e)r — (o). Expressions fox)) (j = 1,...,9), derived in Appendix A, are given by

o® = 8(p1y) — —6(P1¢1) - M(S(qzsl) (3.11)
1 p191 U — U pim o
@ _ =
a = 2025(P1¢1) + 20, —3d&(up) + (Uz — (U1+C1)> 2 3(¢1), (3.12)
p ¢ uz —u Pl
a® = 8( Pigp1) — ! 1(3(U1) + (LI —2(U —101)> L 21 (91), (3.13)
a® = 8(pa) — %5(P2¢2), (3.14)

1
a® = —8(P2¢>2) + ‘;Z—‘ha(uz) (3.15)
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1 P29
a® = 2—C§6<Pz¢z> - ;T;Muz), (3.16)
oD = pag28(2), (3.17)
® — §(N) — — 1 §(Poy). 3.18
o (n) o (P2¢p2) ( )
|
a® = 228 (1) + 1 8(pap2) — gs(Pm). (3.19)

Here, it is again noted that these expressions are to be evaluated at the constant refe
stateq*. The expressions fax® [Eq. (3.12)] anda® [Eq. (3.13)] are singular when
Uy = u; + ¢; andu, = u; — ¢y, respectively; also, the expression tdf [Eq. (3.18)] is
singular wheng, = 0. These points correspond to the sonic and complete combust
singularities discussed in the previous section. At these points, the model equations be
parabolic, and the eigenvector expansions given by Egs. (3.9) and (3.10) are no longer \
The methodology used to suppress numerical instabilities at these points is discussed
end of this section.

3.3. Approximate Solution of the Nonlinear Two-Phase Riemann Problem

An approximate solution of the nonlinear two-phase Riemann problem for arbifrary
andggr will now be formulated. Following Roe [49] and Glaister [18], it is desirable t
construct the approximate solution such that the following criteria are satisfied.

1. The approximate solution reduces to the exact solution of the linear Riemann prob
asgr — gL — Q.

2. The approximate solution is derived from a hyperbolic system of equations.

3. The Rankine—Hugoniot relations are satisfied across all discontinuities.

In essence, these criteria stipulate that the approximate solution be consistent witt
solution of the original system of hyperbolic equations.

The solution of the linear Riemann problem satisfies the above criteria. As such, |
plausible to use this solution as a basis for constructing the approximate solution. To
end, we require that the approximate solution have the same functional form as the solt
of the linear Riemann problem evaluated at an average Gtatgch is different from the
reference statg*. The problem then reduces to one of properly defirfjrag a function of
the arbitrary initial datay, andgg.

We first reexpress the solution of the linear Riemann problem in a form which bet
facilitates the derivation of the approximate solution. In particular, we reexpress the solu
of the linear problem in terms of the quantiti¢g ui, €1, ¢», Uz, €, N, andl and the new
quantities(p1¢1), (P1¢1), (02002), (P2¢p2). These latter quantities are the partial density an
partial pressure of the gas and solid, respectively. Also, the derivatives

oF, _ R

o | il
3o pea " o (hidi).&

, and F_ = i=12
N 08 (i di)bi ( )

are introduced, where thE denote the functional relationshig3¢; = F (oi i, ¢i, &)
obtained by multiplying Eqgs. (2.17) and (2.18) #y and¢,, respectively, and expressing
the results in terms of the desired quantities. We then seek to dgfirterms of the average
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quafltitiespflgly ¥y, 81, H1, Fuy, Fy Fu, 0262, 62, D2, &, Ha, oy, Fa,, o, 1,
and |, which are functions of|. andgg, such that the following algebraic equations are
identically satisfied [average quantities are denote¢slpyhroughout this analysis],

9
A(q) — Z&(i)?(])’ (320)
A(f) = Z&(J))L(J)f(l)’ (3.22)
j=1
where
AL @O = 5§ 4 &, By — &1, Do, D + &2, Dp — €2, T2, Do, T, (3.22)
FO = [1, 5, Hy — &/11,0,0,0,0,0,0], (3.23)
F® =1, ;4 &, Hy + 9161,0,0,0,0,0,0]", (3.24)
F® =[1,5, — €. Hy— #¢&.0,0,0,0,0,0]", (3.25)
F® = [0,0,0,1, 7 Hz — /T2 62,0,0]", (3.26)
F® =10,0,0,1, 5 + &, Ha + 262, ¢a. i/ p2gp2, 117, (3.27)
F® = 1[0,0,0,1, # — &, Ha — 5282, ¢2. i/ 0202, 117, (3.28)
L Flm o F1¢152
p202((T2 — 9102 — &) pagpo((D2 — 11)% — &)
Fu, (Hi+ 010, — 33 F T
FPua(at B2 5) o Fae g qf (3:29)
p2gp2((D2 — 91)2 — &) p2¢2l"2
7® =10,0,0,0,0,0,0,1,0]", (3.30)
9 =10,0,0,0,0,0,0,0,1]", (3.31)
. 1 -
a = Aprgr) — A(P1¢1) (3.32)
~ 1 101 Uz — U1 F1
@_ = 2 A(p1), (3.33
* 262 2¢; (52 — (U1 + 51)) 28 (). (333)
i = L APy — 2 1¢1A(u1) b2 — ¥1 1“ A(¢y), (3.34)
2~2 172 — (51 — 61) 202
. 1
a? = Apogp) — ?A(szﬁz), (3:35)
2
1
5 = L AP + 22 Ay, (3.36)
2C5 26,

- 1 P22
©® = AP,
a 22 (P2g2) — 2%,

&7 = padaA($2), (3.38)

(3.37)
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&® = A(N) - —— A(Pagn), (3:39)
02¢2C5
_ N i
a9 = papaA(l) + T A(pag2) — @A(Pﬂﬁz), (3.40)
2

andé2, &, Py, Pog, [1, andf™, are given by

Ci = P1¢l Flel + Flpld)l’ 63 P2¢2 F2e2 + F202¢2’ (3-41)
,01¢1 ,02¢2
o YA 72 o o 2
P1¢1=,01¢1(H1—é1—21> , P2¢2=/02¢2<H2—92—22> (3.42)
Fro 2 P e 2 Fy (3.43)
o161 P22

Here, the difference operator is defined/bge) = (e)g — (o)., Where the differencgr —

g, is not necessarily small [as opposed to the difference opeYatpdefined for the linear
Riemann problem]. If suitable averages can be defined, then the approximate solu
q(x, t) andf(x, t) are given by

gty =qu+ »_ alr®
A <x/t
=qr— »_ alrv, (3.44)

AD>x/t

fx,t) = fL + Z gMOrDFd
7.0 <x/t
=fr— Y aVi0F0. (3.45)
A >x/t
Equations (3.20) and (3.21), and Egs. (3.44) and (3.45) are analogous to Egs. (3.9
(3.10), and Egs. (3.6) and (3.8), respectively.
To define the desired average quantities, it is necessary to solve the nonlinear alge
problem given by Egs. (3.20) and (3.21). Though the solution of this problem is nontrivi

closed form expressions can be obtained for the average quantities. The derivation of 1
quantities is given in Appendix B; the results are summarized below (wherg, 2):

oid = \/piLiL pirdir, (3.46)
~ _ ApPiLdiLUiL + +/pirOIRUIR
= , (3.47)
VoiLdiL + VPirdiR
& = VOILPiLEL +\/,0iR¢iRe|R’ (3.48)
VoiLdiL + Voirdir
VpiLdiL HiL + V/pirgirHir
, (3.49)
VoiLdiL + Voirdir

V2L P2 P21+ A/ P2RrRP2RO2R
: (3.50)
VP2, daL + /P2rO2R

fiy =

$2 =




A HIGH-RESOLUTION METHOD FOR TWO-PHASE DDT 397

A P2L P2 N2R 4 A/ p2RrP2RN2L

A= 3.51
" VP2 P2l + v/ P2rP2R (3.51)
P Vo2 P Lo + A/ p2rP2r 2R (3.52)

VP21 baL + p2réb2R
(3[Fi (oirdir. dir. €1R) + Fi(pirdir. dir. &L) + Fi(oirdir. diL. €L)
+Fi(pirdir. ¢iL. &R)] — 7[Fi(oLdiL. ¢ir. &R) + Fi(oiLdiL. $iL. BR)
Fioo =1 +Fi(oiidiL, dir.6L) + Fi(oicdic, di. &0)]) /Alpigi) i Alpig) # 0,

ilinsy (0191, DR, B1R) + g5 (0idis iR, L) + 50555 (P i PiLs @R)

+ 505 (oigi, dic. @], if AGpig) =0,

" (3.53)

(3[Fi (oirdir. dir. &1R) + Fi(oiLdiL. dir. @] + 2[Fi (pirir. SiL. BR)
Fi, =4 +F(oiL. dic.aL)l)/Alg) if Alg) #0, (3.54)

%[a¢' (OiRDiR, Pis €IR) + ks (pIL¢|L7 ¢|,QL)] if Algi) = 0,

(3[Fi (oirdir. ir. €1R) + Fi(piLdiL. #iL, @R) + Fi(pirdir, diL. &R)
+ Fi(piLdiL. dir. @R — 3[Fi (oirdir. diL. L) + Fi(pirdir, dir, €L)
Fi,=q +F(oiLdiL. dir. L) + Fi(oidic, di.aL)])/Ae) if A(g)#0, (3.55)
7 [5e (oirdir, ir, &) + 55 (pirdir, diL, &) + S (piLdiL, dir, €)
+ 55 (oL, i, @)], if Ae) =0.

The averages defined by Egs. (3.46)—(3.52) are similar in form to the “square root” aver:
defined in Refs. [18, 49]. Though the averages for the thermodynamic derivatives def
by Egs. (3.53)—(3.55) appear complicated, it is shown in the section on numerical sim
tions that they lead to relatively simple expressions that can be easily evaluated whel
functional form of the equations of state are specified and that the expressions are phys
reasonable. However, these expressions may be difficult and/or computationally expel
to evaluate for thermodynamic data given in tabular form. Furthermore, these average
quire function evaluations for artificial states constructed from the initial giat@ndqg,
and it is possible that these states lie outside the range of validity of the thermodyne
data. Glaister [20] has addressed similar deficiencies for his approximate Riemann sol
and has modified his solution to overcome these shortcomings. It is possible that sir
modifications can be made for the approximate solution outlined here.

It is easy to verify that the three criteria stated above are satisfied by the approxin
solution. First, the averages defined by Egs. (3.46)—(3.55) satisfy the property-that
asq. — gr — Q; consequently, the approximate solution properly reduces to the ex
solution of the linear Riemann problem in this limit. Second, since the approximate solu
was constructed to have the same mathematical structure as the exact solution of the
Riemann problem, the approximate solution can be considered to be associated wi
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equivalent linear, constant coefficient system of hyperbolic equations (provideg ti#at ~
71 & & andg, # 0). As such, the approximate solution has the same physical interpretat
as the solution of the linear Riemann problem and consists of (at most) nine discontint
waves separating seven regions of constant state. Third, the jumg@soif across theth
wave are given by

[q]; = aVFD, (3.56)
[f]; = 53D (3.57)

Thus, the Rankine—Hugoniot relations are satisfied across the discontinuities since
[f1; = 20[al;.

A consequence of this property is that, in the event thaiindqr can be connected by
a single shock or contact discontinuity, the approximate solution agrees with the e
solution of the nonlinear Riemann problem [18, 48]. Last, we note thaafer) = O [or
A(¢2) = 0], the governing equations for the gas and solid, given by Eq. (2.24), decou
Similarly, the approximate Riemann solution given here decouples for the gas and s
and the resulting approximate solution for each phase reduces to the approximate sol
given by Glaister [18] for a single-phase nonideal system.

3.4. Implementation of the Numerical Method

It is required that Eq. (3.1) be expressed in conservative form so that the correct prt
gation speeds of discontinuities are predicted [33]:

At
K= Q- o [Fer2@) = Feae(Q)]. (3.58)

Here, itis assumed that the spatial domain is discretized into uniformly spaced nodes loc
at the points¢ (k = 1, 2, ...). Each node is located at the center of a computational cell
width Ax. The locations of the left and right boundaries ofktiecell are denoted ag_1,»
andxy.1/2, respectively. The vector quantiti€y andQE+1 are numerical approximations
for g attimest” andt"*! = t" + At, respectively, wherat is a small time increment. The
vector quantitie .1/, which are dependent up@', are numerical approximations for
f at the cell boundarieg..1/».

The implementation of the approximate Riemann solution within the framework
Godunov’s methodology is now described. First, the stgtes- Qg andggr = Qg,, are
defined to the left and right of the computational cell boundary locateg ab; this step is
theprojection stepf Godunov’'s methodology. The solution is then allowed to evolve ove
asmall time incremenit, and the numerical fluk.;1,> is computed from the approximate
Riemann solution; this step is tiegolution stepf Godunov’s methodology. The numerical
flux is given by either expression in Eq. (3.45) evaluatex/at= 0. Alternatively, averag-
ing the two resulting expressions for the numerical flux gives the following expression
Fr+1/2 used in this work:

n n 9
s QR +1(QR) % [Z&(i)ﬁ(i)ﬁ(ﬂ} . (3.59)
=1

2
k+1/2
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The time incremeniAt is chosen such that waves associated with neighboring Rieme
problems do not interact, giving rise to the Courant—Friedrichs—Lewy (CFL) condition

T AL

max
AX

]

<k; j=1,...,9 k=12.... (3.60)
k+1/2

Here, the constamt, commonly termed the CFL number, lies inthe range @ < 0.5. The
valuex = 0.4 was used for all computations presented in this paper. Once the numel
flux is computed at each cell boundary, the solution at titheé = t" 4+ At is obtained from
Eqg. (3.58); this step is theconstruction stepf Godunov’s methodology. The process is
then repeated to further advance the solution in time.

The approximate solution has three deficiencies which must be addressed. First, !
all waves are approximated by discontinuities, rarefaction waves, which have a contint
structure, are not accurately represented. This common deficiency poses no difficulty e
for the case when a gas or solid sonic point exists within a gas or solid rarefaction w.
respectively. Various techniques can be used to modify the numerical flux at computati
cell boundaries where a sonic rarefaction is predicted. To this end, an entropy criteric
used to detect sonic rarefactions in both the gas and the solid, i) if< 0 < A+,
where quantities associated with the constant states immediately to the left and rigl
the rarefaction shock are labeled with superscript and “+”, respectively. If a sonic
rarefaction is detected, we locally employ a numerical flux which has been modified bz
on the technique proposed by Harten and Hyman [25]. As a comprehensive discussic
this technique is given by LeVeque [33], we refer the reader to this reference for detalil

Second, the approximate solution is not uniformly valid since the eigenvector expans
given by Egs. (3.20) and (3.21) break down near the singulavijsies 7; &+ ¢, andg, = 0.
Numerical experiments have shown this deficiency to result in severe numerical instabil
near these points. Within the context of the approximate Riemann solution, the sonic sil
laritiesv, = v 4 €; occur when the discontinuity in volume fraction, propagating at spe
U, impinges upon either a gas shock or rarefaction, propagating atspeet 6rv;, — €;.
For such cases, there may exist complicated wave interactions that are not predicted k
approximate solution. As shown by Keyfitz and Kranzer [31] for a simple mathemati
system having similar parabolic degeneracies, such interactions may result in a seri
additional waves being produced, with the solution of the Riemann problem consistin
multiple waves in a single characteristic field. For the approximate solution formulatec
this paper, it was implicitly assumed that a physically relevant unique solution exists wt
consists of at most nine waves, one associated with each characteristic field; as suct
assumption may be invalid near the sonic singularities. In order to properly address
issue, a more detailed analysis of the Riemann problem would be required. Here, we a
some uncertainty and choose to only suppress numerical instabilities which are know
occur near these singularities. Also, we note that if no jump in volume fraction exists [i
A(¢2) = A(¢2) = 0], then the sonic singularities are inconsequential because the qua
tiesd@7@, @®7®, anda7? in the eigenvector expansions remain well defined. Th
result is easily seen from the definitions given in Egs. (3.23)—(3.40).

General modifications to the Godunov methodology which are needed to suppres:
merical instabilities resulting from a loss of hyperbolicity are discussed byeBall. [7].

To avoid numerical difficulties near the singularitiés= u; + ¢;, we adopt a technique
that is similar to that proposed in Ref. [7]. In particular, we assume that a sonic singuls
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exists if the criterion
|2 — (U1 £Cp)| < Ce (3.61)

is satisfied, where, is a small positive constant. The valae= 50 m/s was used for all
computations performed in this work. In such instances, we collapse the waves propag
at speed; andvi + €; or 91 — €1 (whichever wave is involved) into a single wave propa:
gating at speeil® = (¥, + ¥, + €1) /2. The jump across this wawe{'f ?, is then defined
in terms of both the differenc®y, , — Qg and the jumps across the waves not associate
with the sonic singularity. For example, if the singularity is associated with the gas w:
propagating at speéd® = §; — &, then the following quantities are defined,

5\(1) = 52 + ﬁ1 - 61

-
a® = HA(q) —gWFD _ 5@r@ _ 5086 _ &(G)F@H’ (3.62)
A(Q) —aOFD —g@r@ _ gOFO _ g®F®

#(D
' [Aq — aOFD — G@r@ —gOF® — gOFO|”

where| o || is the Euclidean norm. Consequently,

Qu-Q= > alfv (3.63)

j=1256.1

by construction. The following modified numerical flux, denoted by supersctiptis
proposed:

f(Qp) + f(Qp 1 e
Friye = M -5 - La<1>|)\<1>|r(n . (3.64)
j=12506.1 k+1/2

A similar result holds if the singularity is associated with the gas wave propagating
speed.? = §; + &. Though the Rankine—Hugoniot relations are not identically satisfie
by this newly defined wave (i.e {]i # 2[q];), they are nearly satisfied; this has beer
numerically verified. Comparisons of numerical predictions with exact steady solutions
two-phase detonation structures possessing these sonic singularities indicate that this
is inconsequential.

Last, to suppress numerical instabilities ngar= 0, it is necessary to constrag to
be greater than a constant minimum vaige This is achieved by terminating combustion
for ¢, < ¢2c. A large number of numerical experiments that showed the onset of instabi
for ¢» ~ 1 x 107 were performed, though the instability was not severe; thus, the val
$2c = 1 x 10~ was used for all computations performed in this work. This burn terminatic
was determined to have an insignificant affect on both DDT and detonation wave struct
Further, our steady-sate analysis did not require burn termination as the particle ra
approached zero without difficulty. As such, the model is well behaved in this limit.

3.5. Higher-Order Spatial and Temporal Accuracy

The upwind numerical method outlined in the previous subsection has only nominal fi
order spatial accuracy and has first-order temporal accuracy. First-order spatial accure
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characteristic of all Godunov-based methods for which the initial state within each com
tational cell is assumed constant in firejection stepln this subsection, approaches use
to increase both the spatial and the temporal accuracy of the method are given.

Using the flux-extrapolation methodology of Chakravarthy and Osher [10] for obtaini
second-order total-variation-diminishing (TVD) methods, we get the following higher-orc
numerical flux function,

(H) EL) (i+) ¥(i-)
Fryre = k+1/2+ E (dfk 12 dfk+3/2) (3.65)
where
it L{[L0Pa0], [(UDg0] 3 )
k-1/2 — -1/2 k+1/2J " k+1/2°
(j-) L
(- (-5
dfiyae = L{[297@D], 5 [R07aY ]k+1/2}rk+1/2'

Here, Fﬁ';r)l/2 denotes the lower-order numerical flux defined in Eq. (3.59). The opera
L{y, z} is a nonlinear flux limiter which limits the amount of numerical d|1°fu5|0|’|:blil/2
based on the approximate Riemann solution at cell boundaries located immediately t
left (xk—1/2) and right &« 3/2) of the boundary ax.1,2. The flux limiter used in this study
is Van Leer’s limiter [63], which is given by

yz+lyZ

Liy. 7} = Ytz

Other limiters exist that could be used in place of Van Leer’s limiter, or different limite
could be used for the gas and solid; this limiter was chosen based on numerical experin
that indicated that it can accurately capture discontinuities in both the gas and the soli

The use of the flux given by Eq. (3.65) in Eg. (3.58) results in an explicit TVD numeric
method that has nominally second-order spatial accuracy in smooth regions of the f
first-order spatial accuracy near discontinuities, and first-order temporal accuracy. The
flux given by Eq. (3.65) results in a conditionally stable method provided that an additio
constraint on the time steft is satisfied (i.e., in addition to the CFL condition) [10]. Thus.
it is desirable to increase the temporal accuracy of the method to obtain better stat
properties and to eliminate the need to satisfy an additional time step constraint. To
end, the following two-step Runge—Kutta predictor/corrector algorithm is used to adva
the solution fromt" to t"1 = t" + At [28]:

~ n At n
Qu=0Q - 2AX [F |(<T-)1/2(Q ) — |(<H)1/2(Q )],

Qrt=Qp - [ﬁii/z(@ F Q).

Here, the first step is the predictor step whereby the solution is allowed to evolve over
time interval%, and the second step is the corrector step in which the updated solu
is computed using the numerical flux of Eq. (3.65) evaluated in terms of the intermed
solutionQ. Both the predictor and corrector steps are expressed in the conservative 1
of Eqg. (3.58); as such, conservation is maintained. The resulting method is second-c
accurate in time.
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3.6. Numerical Solution of the Full Two-Phase Equations

The numerical approach used in this study to solve the full model equations is base
the following time-step splitting procedure [62]:

QEH _ ECAtACgAtECAtQE‘ (3.66)

Here,Q" andQ"*2 are the numerical solution at tim&sandt"*2, respectively£4! is the
convective numerical operator, add*! is the source numerical operator. The convectiv
operator solves the convection problem using the high-resolution TVD method formula
in the previous section, and the source operator, which is described below, solves the
interaction terms using a high-order time accurate stiff ODE solver. During the convect
steps, the phase interaction processes are suppressefdj.e=, 0 in Eq. (2.24)]; likewise,
gas and solid convection are suppressed during the source ste%(fi?.e,—1 0in Eq. (2.24)].
The splitting procedure requires that the convection step be performed over the time
At and that the source step be performed over twice the time step, whéesehosen based
upon the CFL condition given by Eg. (3.60). Provided that the ODE solver is at least secc
order accurate intime, the splitting procedure given by Eq. (3.66) results in an approxima
which is nominally second-order accurate in both space and time. We recognize tha
splitting technique used here may result in the prediction of erroneous shock speeds
to the coupling of numerical diffusion and stiff source terms as demonstrated by Cols
etal.[11] and LeVeque and Yee [32], though comparisons of numerically predicted she
wave speeds with exact values have shown good agreement for all cases considered |
work.

To account for phase interaction processes, the following autonomous system of five
dinary differential equations (ODES), obtained by setl}{gg: 0in Eq. (2.24) and reducing
the resulting system, must be solved over the time intersal& each computational grid
point,

d
% = hs(ys), (3.67)
where
Ys = [p2, $2, Uz, &, 17,
C C T
he(ys) = | P92(P, = Py — ) — ¢oCom 2222 (P — P — 1), -2 _ & ¢
Hc Hc P22 P22

The definitions foICr,, C4, Ce, andC, are given in Eq. (2.28). Algebraic expressions fol
p1, @1, U1, ande; in terms ofys are obtained by respectively adding the gas and solid ma:
momentum, and energy equations and integrating the resulting homogeneous ODEs,

P11 + p202 = [p10p1 + P2l i+, (3.68)
P11U1 + padoly = [prp1us + pagoUz] Rt (3.69)
u? u2 u? u2\ 1Mt
P11 (e1 + %) + p202 (ez + f) = |:,01¢1 <e1 + 51) + pagh2 (ez + ?Zﬂ , (3.70)
K

where the right-hand sides of these equations are integration constants obtained usir
dataQE+1 provided by the preceding convection step in Eq. (3.66). Here, subgcidpt
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used to indicate that the integration constant depends upon the grid cell logatimmd
the notation superscript+ 1 is used to indicate that the constant is based on the date
timet™!. The algebraic relations given by Egs. (3.68)—(3.70), with the saturation condit
¢1 = 1 — ¢, are sufficient to express the gas variables as algebraic functions of the des
solid variables. As these equations are nonlinear, they give multiple roots for the gas-p
variables corresponding to subsonic and supersonic solutions; thus, the proper root mt
selectively chosen in a problem specific manner. Last, the homogeneous ODE for pat
number density can be directly integrated to give

n=ni, (3.72)

thus, the particle number density is constant during the source step.

Equation (3.67) is in a form suitable to be numerically solved using standard ODE solv
For this study, an implicit stiff solver contained in the software package LSODE (Live
more Solver for Ordinary Differential Equations) [27] was used to numerically integre
these equations. The solver uses a method based on backward differentiation formula
internally generates a full Jacobian matrix (i.§}—§,) using finite differencing. The solver
achieves high-order time accurate approximations by adapting the integration time
such that the truncation error of the scheme meets a user specified tolerance. For the
putations performed in this study, an absolute tolerance of magnitQde 10~° was used
for each component of;.

4. NUMERICAL SIMULATIONS

Comparisons are given between numerical predictions and known solutions to tl
different test cases in order to demonstrate the numerical method. The test cases inc
(1) an inert two-phase shock tube problem; (2) the evolution of an inert compaction w
in a granular material induced by a moving piston; and (3) the evolution of a two-ph:
detonation wave in an energetic granular material induced by a moving piston. The
case considers gas and solid convection only, whereas the second and third cases cou
and solid convection with phase interaction processes. All computations were perfor
on an IBM RS 6000 Model 350 workstation.

4.1. Inert Two-Phase Shock Tube Problem

The shock tube problem provides a stringent test for numerical methods used to s
hyperbolic systems of conservation laws since it generally requires the resolution of
contact discontinuities and shocks. As previously discussed, the two-phase shock
problem, also known as the Riemann problem, involves the break-up of a single initial
continuity separating constant leftand right R) states into self-similar waves consisting
of a shock, a rarefaction, and a contact discontinuity in both the gas and the solid. As
problem considers convection ongj(q) = 0 in Eq. (2.24).

For this simulation, ideal equations of state were used for both the gas and the
[PL=p1RiTy1, €1 = Cu1T1; Po = 0oR: T2, €& = C,2T,] so that the numerical predictions
could be compared to existing closed-form analytical solutions. To this end, no jumy
volume fraction was prescribed across the initial discontinuity; as such, volume frac
remains constant for all time, and the analytical solution for each phase is simply giver
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FIG. 3. Comparison of the predicted and exact solutions for the inert shock-tube probiem@ins: (a, b)
gas and solid density, (c, d) gas and solid velocity, (e, f) gas and solid pressure, (g, h) gas and solid temper
and (i) particle number density.

the classical solution to the shock tube problem for a single phase system [12]. For ti
equations of state, Egs. (3.53)—(3.55) reduce to

~ -1
Fim = " > @r+aL),

Fi, =0.

- 1

Fig, = " > (PRGIR + piLSIL).

wherey; (i = 1, 2) is the specific heat ratio. Values chosen for model parameters and ini
conditions are given in Table |. Different values &f andc,, were used so that differences
in the gas and solid solutions exist. The computational domain used for this simula
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FIG. 3—Continued

(=5 < x <5 m) was discretized inttl = 200 uniformly spaced nodes, with the initial
discontinuity located at the center of the domain<{ 0 m). The computational run time
for this simulation was approximately 2 min.

Shown in Fig. 3 is a comparison between the numerically predicted solution and the
act solution at = 6 ms. For each phase the solution consists of a right-propagating sh

TABLE |
Parameter Values and Initial Conditions
Used for the Shock-Tube Simulation

Parameter or

initial condition Value Units
Cu1 7.18x 107 J/(kg K)
Cp2 2.39x 107 J/(kg K)
Ry 2.87x 107 J/(kg K)
R, 2.87x 107 J/(kg K)
Uy 0 m/s
Uz 0 m/s
Uir 0 m/s
Usr 0 m/s
p1L/ PR 1.00x 10
P2/ P2r 1.00x 10
Ga/P2r 1.00x 10°
P /Pir 1.00x 10
Po /Par 1.00x 10

n./Ng 1.00x 10°
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wave, followed by a slower right-propagating contact discontinuity and a left-propagat
rarefaction. As a consequence of choosipg< c,;, the solid shock and rarefaction prop-
agate faster than those of the gas, while the solid contact discontinuity propagates 1
slowly than that of the gas. The numerical predictions agree well with the exact soluti
both the wave speeds and the magnitudes of the jumps are correctly predicted. Fur
more, the numerical method is able to capture the discontinuities without the generatic
spurious oscillations. The shocks are spread over approximately three computational ¢
while the contact discontinuities are spread over approximately seven cells. Typicall
larger number of cells are required by shock-capturing methods to capture discontinu
associated with linearly degenerate characteristic fields (i.e., contact discontinuities).
is due to the absence of a “steepening” mechanism for linearly degenerate fields, sut
provided by the coalescence of acoustic waves in genuinely nonlinear acoustic fields |
Consequently, the numerically predicted spatial profiles for contact discontinuities do
steepen as time evolves.

To investigate the convergence rate of the numerical method, which provides a mes
of its spatial accuracy, it is necessary to define the error associated with the nume
predictions. For the test cases given in this paper, the Erait" is based on either the gas
or the solid pressure & 1, 2) and is defined by the 1 norm

N

1 LR, — P (X
=1 !

where P, (t") is the numerically predicted pressure at the nodal locatigrP (X, t")

is the pressure given by the exact solution at this same loca#bris a characteristic
pressure used to nondimensionalize the error, Bni the total number of computa-
tional cells. This error is the fractional error used by Woodward and Colella [64] a
by Grismer [24] to demonstrate the convergence properties of similar high-resolution
merical methods for the Euler equations. The convergence rate of the method is define
the change in this error with respect to a change in grid resolution and is estimated by
slopep of the best fit line through the data poirts, 1/N) plotted in the logl/N)-log E
plane.

Convergence data obtained for the inert shock tube problem are plotted in Fig. 4. For
plicity, itwas assumed th&; = R, = 287 J/(kg K) anat,; = ¢,» = 717.5 J/(kg K) for this
convergence study. Consequently, identical solutions are obtained for the gas and solid,
of which are given by the gas-phase solution shown in Fig. 3. The data were obtained u
computational grids for whicl was within the range 1008 N < 15000. The character-
istic pressure used to nondimensionalize the error Rfas: Py = 0.1 MPa, the pressure
associated with the state to the left of the initial discontinuity. Results of this study sh
the convergence rate to e= 1.003. The convergence rates reported in Refs. [24, 64
based on the exact solution of the inert shock tube problem for an ideal gas, were
near unity. Though these high-resolution shock-capturing methods have higher spatia
curacy than nominally first-order methods (i.e., the Lax—Friedrichs scheme, Godun
method), the accuracy is less than second-order. This result is expected since these
ods reduce to nominally first-order accuracy near discontinuities due to the flux-limiti
procedure. For the range of nodal points used in this study, machine round-off error wa
significant.
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FIG. 4. Numerical convergence data for the inert shock tube problem based on the 1 norm for the presst

4.2. Inert Compaction Wave Problem

This simulation involves the evolution of an inert compaction wave due to compress
of the granular material by a moving piston. A compaction wave refers to the propaga
of a finite disturbance in volume fraction due to a local mechanical stress imbalance |
P, — P, — f #£0in Eq. (2.7)]. Here, the processes of gas and solid convection are coug
with the processes of interphase drag, interphase heat transfer, and material compact
is not the intent of this section to give a detailed compaction wave analysis; rather, res
that illustrate the evolution of a compaction wave are given, and a comparison betweel
numerically predicted compaction wave structure and the steady structure predicted b
analysis of Powerst al.[43] is given. Also, convergence results are given in order to furth
validate the numerical method. The reader is referred to Refs. [2, 43, 52] for a thoro
discussion of compaction waves in energetic granular materials.

As this simulation involves the evolution of a compaction wave resulting from pist
impact, the model equations valid in a fixed laboratory reference f(ante, as presented
in this paper, were transformed to a piston-attached reference {gamdor convenience.
The transformation, as illustrated in Fig. 5, is givengby: x — Xp(t) andv; = u;j — up(t)

)

Laboratory
Frame

FIG.5. Schematic of the piston-attached coordinate system.
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(i =1, 2), wherey; is velocity in the piston-attached frame, axglt) andu,(t) are the
piston position and the prescribed piston velocity in the laboratory frame, respectiv
The piston is continuously accelerated from rest to a constant velocity of 100 m{ssin 2
the piston velocity is given by

100 m/gsin[Z (L)) forO<t <2us
up(t)z{( 9 [2(2,5)] <lzecpu 4.2)

100 m/s fort > 2 us.

This rapid acceleration is chosen so that the piston attains its maximum velocity over a
interval which is short relative to the time required for the piston-induced compaction w:
to become fully developed. A maximum piston velocity of 100 m/s is chosen since muct
the experimental and numerical compaction and DDT data reported in the literature t
been obtained for piston velocities close to this value [5, 9, 59-61]. Since the piston-attac
frame is noninertial, piston acceleration terms must be included in the momentum and:
energy equations for the gas and solid [Egs. (2.2), (2.3), (2.5), and (2.6)]. These term:
treated as time-dependent source terms which slightly modify Eq. (3.67), resulting i
nonautonomous system; details of the modification are given in Ref. [22].

For this simulation, equations of state representative of the high-explosive HMX (cyc
tetramethylene tetranitramine) are adopted [45]. A virial equation of state was used
the gas P = p1RiT1(1 — boy), €1 = ¢,1T1, whereb is the constant virial coefficient]
and a nonideal Tait equation of state was used for the s&id<{(y» — 1)Cy202To —
0200 /2, € = CaTo + p200/(y202) + 4, Wherey, is the Tait parametes; is the nonideal
solid parameter, ang is the mass specific chemical energy]. For these equations of stz
Egs. (3.53)—(3.55) reduce to the following expressions for the gas and solid, respectiv

~ Ry P11 + d1r PLLPIL + P1IRPIR [ €1L + E1R
F =—(1+2b

Lo Cv1< * d1L 1R 2 2 '

~ 1Rb[( )2 ( )2

£y, = _1RD { p1LP1L ey + P1IROIR ewrl .

2¢a1 | P1d1R P1L01R
£ = Ru |:101L¢1L + P1RPIR n b¢1L + ¢1r <(/01L¢>1L)2 + (P1R¢1R)2>:|
I o8] 2 d1LP1R 4 '

~ L+
F2ﬂ2¢z =02-1 (% - q) >

|E2¢2 = —pP200,

'fzez — (- 1) (02L¢2L "2‘/02R¢2R>.

The time-dependent boundary conditions that must be satisfied at the piston surfac
easily obtained by requiring the velocity of both the gas and the solid, measured relative t
piston, to vanish at this boundanmy [0, t) = v2(0, t) = 0]. Thisrequirementis equivalentto
enforcing a zero mass flux condition at the piston surface. Time is restricted such that the
insufficient time for waves generated by the moving piston to reach the upstream bounc
thus, no condition is enforced at this boundary. The computational dgMairg < 1.2 m),
which consisted ofN = 600 nodes, was initialized with the ambient conditions given i
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TABLE Il
Parameter Values and Ambient Conditions Used for the Compaction
Wave and DDT Simulations

Parameter or Compaction DDT

ambient condition value value Units Ref.
b 7.60x 104 7.60 x 1074 m/kg
R 8.50 x 1% 8.50 x 1(? J/(kg K) [45]
Cu1 2.40x 10° 240 x 10° J/(kg K) [3, 45]
Cy2 150 x 10° 150 x 10° J/(kg K) [3, 8, 45]
o 8.98 x 10° 8.98 x 1(° m?/s? [43, 45]
q 0 584 x 1¢° J/kg [8, 45]
ki — 1.00x 10° st
T — 2.69x 10° K
lig — 5.00x 10
a — 290 x 10°° m/(Pas) [8, 45]
h 1.00 x 107 1.00 x 10 JI(K s nf?3) [45]
B 1.00 x 10* 1.00x 10¢ kg/(s n?) [45]
e 1.00 x 1C° 1.00 x 10 kag/(s m) [45]
m — 1.00 x 10 [8, 45]
V2 5.00 x 10° 5.00 x 10° [43, 45]
ro 1.00x 10* 1.00x 104 m [5, 8, 45]
T, 3.00x 1% 3.00x 1% K
Plo 1.00 x 10* 1.00 x 10* kg/m? [45]
P20 1.90 x 10¢° 171x 10° kg/m? [61]
b2 7.30x 10 7.00x 107! [61]

Table Il. Values for the model parameters are also given in this table. The computati
run time for this simulation was approximately 45 min.

Figure 6 shows the numerically predicted history for the gas and solid velocity (meast
relative to a fixed laboratory frame), the gas and solid pressure, the solid volume fract
and the particle number density. Hefés position measured relative to the piston surface. .
smooth but rapid increase is predicted in all variables in response to the sudden accelel
of the piston. A dispersed compaction wave quickly develops and propagates away |
the piston with a uniform speed of 418.3 m/s, which is well below the ambient solid sot
speed £3000 m/s). A solid shock does not form in response to the accelerating pis
due to the rapid relaxation in solid pressure associated with material compaction (
P, — Py + f). The predicted time and length required for transition to a fully develope
compaction wave are approximately 0.1 ms and 10 cm (measured relative to the pis
The solid volume fraction and pressure in the compacted region are predicted to be
and 67.1 MPa, respectively. These values for the compaction wave speed, the final vo
fraction, and the final solid pressure agree well with the experimentally determined va
reported by Sandusky and Liddiard [52] for the impact of a 100 m/s piston with a bec
porous HMX @2, = 0.73). Sandusky and Liddiard observed compaction wave speeds
432 m/s, final solid volume fractions near 0.94, and final solid pressures near 50 MPe¢
values for transition length and time were reported.

Figure 7 shows the numerically predicted variation in solid density, velocity, presst
and volume fraction within the compaction zond at 3.2 ms. Also shown in this figure
are predictions for the steady wave structure given by the simplified analysis of Pov
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FIG. 6. Predicted time histories for the inert compaction wave problem: (a, b) gas and solid pressure, (.
gas and solid velocity, (e) solid volume fraction, and (f) particle number density.

et al.[43]. In their analysis, Powert al.ignore gas effects and describe steady compactic
wave structure in terms of the solid variables. The flow located between the gisto (n)
and the trailing edge of the compaction wage={ 0.82 m) is not shown in this figure. The
prediction labeled Numerical 1 is the solution shown in Fig. 6. The prediction label
Numerical 2, also shown at= 3.2 ms, was obtained by ignoring interphase drag and he
transfer and by ignoring gas effects in Eq. (2.7). As such, a direct comparison can be n
between the numerical and analytical predictions for compaction wave structure. G
agreement exists between the Numerical 2 prediction and the analytical prediction.
noted that a continuous compaction wave structure is predicted and that interphase
interphase heat transfer, and gas effects increase the final solid pressure and decree
final solid volume fraction. The results shown here indicate that the gas has little influe
on compaction wave structure. The wave speed predicted by the simulation denote
Numerical 2 is 405.8 m/s; this agrees well with the value of 404.7 m/s predicted by
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FIG. 7. Comparison of the predicted and analytical solutions for the inert compaction wave structt
(a) solid density, (b) solid velocity, (c) solid pressure, and (d) solid volume fraction.

steady analysis of Powert al. The compaction wave trajectories for the simulation
denoted as Numerical 1 and Numerical 2 are shown in Fig. 8.

Convergence data obtained for this test case based on a comparison of the Numer
prediction with the analytical compaction wave structure are plotted in Fig. 9. Here, the e
is based on the definition in Eq. (4.1), whé?g = 8.21 MPa is the ambient pressure of the

t (ms)

—— Numerical 1 (418.3 m/s)
----- Numerical 2 (405.8 m/s)

X (m)

FIG. 8. Predicted compaction wave trajectories for the inert compaction wave problem.
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FIG.9. Numerical convergence data for the inert compaction wave problem based on the 1 norm for the ¢
pressure.

solid. The scatter in the data from the linear curve fit is greater than that in the converge
data obtained for the inert shock tube problem. This increased scatter is likely due
inaccuracies in the placement of the exact solution relative to the numerically predic
solution in computing the error. As such, the exact solution was placed at the location wi
minimized the computed error. These inaccuracies do not exist for the shock tube simule
since the exact time-dependent solution is known. Since the compaction wave structu
continuous, this test case provides a good measure for determining the spatial accura
the method for a continuous solution. The computed convergence mate 6647. Though
this rate is substantially higher than the rate computed for the test case having discontin
solutions, it is lower than what would be expected from a truly second-order method. T
result is likely due to numerical diffusion introduced by the flux-limiting procedure. It |
possible that the convergence rate might improve for more resolved computational ¢
than used here. However, it is not feasible to investigate this claim since the most resc
case performed as part of this study £ 4000) required nearly 100 h of CPU time.

4.3. Two-Phase Detonation Problem

This simulation involves the evolution of a self-propagating, two-phase detonation wi
due to compression of the granular material by a moving piston. Here, the processes o
and solid convection are coupled with the local processes of combustion, interphase
interphase heat transfer, and material compaction. The results given illustrate the evoll
of a detonation wave, and the numerically predicted detonation wave structure and
structure predicted by a steady-state analysis are compared [22]. The reader is refert
Refs. [3, 8, 44, 45] for a discussion of two-phase detonation waves in energetic gran
materials.

As was done for the inert compaction wave problem, we numerically solve the mo
equations in the piston-attached frame where the piston velocity is given by Eq. (4
Additionally, the same equations of state and boundary conditions used for the compa
wave problem are used here; as such, this problem simulates DDT in granular HMX. Mc
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parameters and initial conditions used for this simulation are given in Table Il. While mos
these values are consistent with experimental data for HMX, the value of the drag paran
B is an order of magnitude smaller than suggested by gas permeation experiments [1]. .
the initial gas density1g is approximately an order of magnitude larger than typicall
found in DDT experiments. These values were largely chosen to facilitate comparis
with the work of Poweret al.[45], as well as to illustrate the evolution of a new two-phas
weak detonation structure. Even so, many experimentally observed features are corl
predicted. The computational domdh < & < 50 cm) consisted oN = 1500 uniformly
spaced nodes. The CPU time for this simulation was approximately 6 h.

Shown in Fig. 10 are the predicted velocity (measured relative to the laboratory frar
pressure, and temperature history of the gas. Also shown in this figure are the spatial pre
att = 210 us. The predicted solid velocity, pressure, and temperature history are she
in Fig. 11. Each of the curves for the solid variables is plotted up to the point of compl
combustiong,. = 1 x 107°). In these figures; is position measured relative to the piston
surface.
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FIG. 10. Predicted time histories for trghocked gas—unshocked sal@ak detonation simulation: (a) gas
velocity, (b) gas pressure, and (c) gas temperature.
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FIG. 11. Predicted time histories for ttehocked gas—unshocked solidak detonation simulation: (a) solid
velocity, (b) solid pressure, and (c) solid temperature.

A dispersed compaction wave quickly forms and propagates away from the pistol
constant speed; the predicted wave speed relative to the fixed laboratory frame is 401.9¢
The predicted compaction zone thickness is approximately 5.0 mm. A continuous varia
in all variables is predicted within the compaction zone. The gas pressure and temper:
increase from their ambient values of 2.57 MPa and 300 K to approximately 19.81 M
and 330.25 K, and the solid pressure and temperature increase from their ambient v:
of 8.21 MPa and 300 K to approximately 55.59 MPa and 304.53 K, respectively. The
and solid velocity increase from 0 to 100 m/s, as required by the zero mass flux boun
condition at the piston surface.

As time advances, the width of the compacted region increases as the compaction:
propagates away from the piston. Combustion initiation is predicted to occur at the |
ton surface after an induction period of approximately L35 Induction periods prior to
the onset of sustained combustion are characteristic of piston-initiated DDT in grani
high explosives [5, 36, 37]. It is widely accepted that during the induction period, weal
exothermic chemical reactions take place due to localized heating of the explosive mat
as itis compacted. Possible heating mechanisms include adiabatic shear localization w
particles, friction between particles, and adiabatic compression of the gas contained w
the interstices of particles, the analysis of which is beyond the scope of this work. .
Gonthieret al.[23] for the modeling and analysis of compaction-induced heating in gra
ular HMX. As progressively more energy is liberated due to combustion, the reaction 1
increases, resulting in a self-accelerating process. Since chemical reaction is local in ne
the compacted explosive nearest the piston surface incubates the longest and, conseq
is first to undergo sustained combustion. The onset of sustained combustion marks the
of the induction period.

As seen in Figs. 10 and 11, a rapid increase in the velocity, pressure, and temper
of both the gas and solid is predicted following the onset of combustion. Transition
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detonation is predicted to occur almost immediately. The detonation continuously ac
erates and strengthens as it propagates through the compacted material. The solid |
completely consumed at the piston surface approximatelys4dfter piston impact; con-
sequently, the solid is not directly affected by the moving pistontfer140 us. The
accelerating detonation overtakes the compaction wave approximatelysld8er pis-
ton impact. Since the gas and solid pressure, gas and solid temperature, and solid vc
fraction continuously decrease immediately in front of the detonation as it traverses
compaction zone structure, both a left-propagating rarefaction and a right-propagating
tropy wave are produced by the interaction. For this case, the entropy wave has a contir
structure (i.e., it is not a contact discontinuity). Subsequently, the left-propagating rare
tion reflects off the piston, the entropy wave continues to propagate slowly to the right,
the accelerating detonation relaxes to a steady detonation propagating at speed 616
Following the detonation is a right-propagating rarefaction which reduces the gas velo
at the end of the reaction zone to that of the piston (100 m/s). The rarefactions are |
cated in the spatial profiles for the gas velocity and pressure-a210 us (Figs. 10a and
10b), and the entropy wave is indicated in the spatial profile for the gas temperatur
t =210 us (Fig. 10c). Because the gas velocity (measured relative to the piston) is :
through the entropy wave at= 210 us, and because thermal diffusion is absent from th
model, the wave does not move relative to the piston, nor does its amplitude decrease a:
advances.

Also indicated in the gas temperature profile of Fig. 10c is an entropy layer immediat
next to the piston surface which is generated during the transition process. Menikoff [38,
and Menikoff and Lackner [40] have shown that shock-capturing methods predict a spur
entropy layer when a shock interacts with a solid boundary and have proposed a produ
mechanism for this anomalous structure which is a direct consequence of the artificial w
of the numerically predicted shock. For hyperbolic equations, the time interval associ
with the shock—boundary interaction is zero since the shock is a discontinuity. Howe

compaction wave
09 < comp
0.8H
t= 14195 us
07
4
06
151.37 170.18 188.93 207.68
Slos “ “ ™
0.4F
0.3+
0.2+
0.1
0 L L L A L L L L
0 5 10 15 20 25 30 35 40 45 50
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FIG. 12. Numerically predicted solid volume fraction history for tehocked gas—unshocked soligzak
detonation simulation.
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pressure, (g, h) gas and solid temperature, (i, j) gas and solid Mach number squared (relative to the w
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numerical shocks, having an artificial width due to numerical diffusion, interact with tl
boundary over a finite time interval. Since entropy production occurs only during the int
action period, the predicted width of the spurious entropy layer is close to the artificial sh
width. Though not shown here, spurious entropy layers were also humerically predic
near the piston surface when the piston was impulsively set into constant velocity 1
tion. Glaister [18] has also predicted spurious entropy layers for similar types of proble
Since the piston was continuously accelerated from rest to a constant velocity, the ef
of the spurious entropy production mechanism may be minimal. Furthermore, the wi
of the entropy layer predicted here is much larger than the length of three computatic
cells, the typical length needed to numerically capture shocks. Nevertheless, it is difficu
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FIG. 13—Continued

conclusively determine if this entropy layer is physical or if it is a numerical artifact of tt
shock-capturing method.

The predicted solid volume fraction history is shown in Fig. 12. Here, the inert compact
wave is seen propagating away from the piston for early time. Across this wave, the amt
mixture is compacted from a solid volume fraction of 0.70 to 0.94. Following combusti
initiation at the piston surface at= 135us, combustion consumes the solid as the resultir
detonation propagates through the compacted material. As seen in this figure, the detor
is about to overtake the compaction wave at 141.95 us. Soon afterward, the steady
detonation forms. The solid volume fraction continuously decreases from 0#4 to
1 x 107° through the steady detonation structure.

The model reasonably predicts many experimentally observed features. Givenin Tab
are comparisons of numerically predicted and experimentally measured quantities fo
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TABLE Il
Comparison of Numerically Predicted Quantities with the
Results of the DDT Experiment Given in Ref. [36]

Quantity Experiment Model
Compaction wave speed 400 m/s 401.98 m/s
Compaction wave thickness 2 mm 5mm
Solid volume fraction behind 0.90 0.94

the lead compaction wave
Time to detonation 142s 138us
Distance to detonation measured 25 mm 10 mm
relative to the piston
Detonation wave speed 6200 m/s 6169.4 m/s

DDT of granular HMX [36]. However, experiments indicate a more complex transitic
process than predicted here involving the propagation of a low-speed combustion f
away from the piston following initiatior~¢400 m/s), the subsequent formation of an iner
solid plug slightly ahead of the combustion front, followed by the formation of a sho
immediately ahead of the plug which induces a prompt transition to detonatioret&on
[59, 60] have modified the conventional two-phase DDT model of Baer and Nunziato
to better account for the transition process including plug formation. Similar modificatio
which only involve the forcing terms of the governing differential equations, can be me
to the present model, and the high-resolution numerical method outlined in this paper
be applied without difficulty.

A comparison of the numerically predicted detonation structure with the structure
dicted by a steady analysis is given in Fig. 13; details of the steady analysis are give
Ref. [12]. This figure shows the variation in density, velocity, pressure, temperature,
Mach number squared (measured relative to the wave) of the gas and solid and ir
solid volume fraction and particle radius within the reaction zone. The flow located |
tween the piston surfacé & 0 cm) and the end of the reaction zoge<£ 43.4 cm) is not
shown in this figure. Good agreement exists between the predicted solutions. As such
clear that ashocked gas—unshocked salietonation structure has evolved. Moreover, sinc
the Mach number of the gas at the end of the reaction zone is greater thanMgisy (
1.094), this structure is classified as a two-phasak detonationsuch structures have
not been previously predicted. The numerical method is able to capture the gas shock
approximately three computational cells without the generation of spurious oscillatic
Though not very evident here, the numerical method has difficulty accurately predict
the variation in solid quantities near the end of the reaction zone; this difficulty is sligh
noticeable in the numerically predicted solid density profile. Reasons for this difficulty
unclear, butitis possibly a consequence of the burn termination technique used in this w

Convergence data based on a comparison of the unsteady numerical prediction fo
weak detonation structure with the result given by the steady analysis are plotted in Fig
Here, the error is based on the definition in Eq. (4.1), wh&fre= 12.75 GPa is the weak
detonation gas pressure at the end of the reaction zone. As with the compaction wave
case, the steady-state solution was placed at the location which minimized the compute
ror. As indicated by lines | and Il in the figure, the convergence rate of the numerical met|
for this problem depends on grid resolution. For relatively coarse grids£480< 2000),
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FIG. 14. Numerical convergence data for the two-phase detonation problem based on the 1 norm for th
pressure.

the computed convergence ratgis= 1.843, which is substantially higher than typical rate:
for problems having discontinuous solutionsl(0). In this case, the convergence rate i
dominated by the integrated numerical error over the continuous reaction zone struc
(~1 GPa) rather than by diffusive errors associated with the lead shaz{ GPa). As
the computational grid is refined (2080N < 4000), the convergence rate is observed t
decrease t@ = 1.324 as diffusion at the shock becomes increasingly important. If the g
were further refinedN > 4000), it is plausible that the convergence rate would approa
unity as expected, but it is impractical to completely address this issue due to compg
tional constraints. The most resolved case performed in this stidy 4000) required
nearly 24 h of CPU time. Fully resolved simulations would take considerably longer
compute.

5. CONCLUSIONS

A high-resolution, upwind numerical method was formulated for the accurate solutior
atwo-phase DDT model which is representative of a class of models used in current prac
The numerical method is a substantial improvement over conventional methods comm
used to simulate two-phase DDT. The method utilizes a new approximate solution for
two-phase Riemann problem, valid for general equations of state, which has the “st
resolution” property common to Roe-type solvers; thus, if the discontinuous initial d
can be connected by a single shock in the gas and/or solid, the approximate soluti
exact. Though less computationally expensive, the use of an approximate solution
necessitated by the lack of an exact solution for the general two-phase Riemann prol
for complex equations of state. In addition to documenting full details of the approxim
Riemann solver, this paper has given a technique for suppressing numerical instabi
near singularities associated with a local loss of hyperbolicity.

The model was shown to predict experimentally observed features associated with [
induced by low-velocity impact of granular energetic solids, including the initial evolutic
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of adispersed compaction wave, a subsequentinduction period prior to the onset of vigo
combustion, and the final transition to detonation. Experimentally observed time sce
wave speeds, and stresses are correctly predicted. Further, the results conclusively
for the first time the evolution of a two-phase weak detonation structure; thus, contrar
conventional assumptions, the Chapman-Jouguet wave speed is not the unique wave
for a self-propagating two-phase detonation. Detailed comparisons of numerical predict
with known theoretical results for the steady weak detonation structure indicated that
method can accurately capture strong shocks induced by detonation with minimal nume
diffusion and dispersion. Based on a detailed convergence study, the nominally second-
method was shown to have a global convergence rate of 1.001 for discontinuous solut
which is comparable to modern high-resolution methods developed for the Euler equat
of gas dynamics, and a rate of 1.670 for continuous solutions.

Finally, we give the following remarks. First, there exists some uncertainty about 1
implications of the model singularities on the approximate two-phase Riemann soluti
It is possible that the approximate solution may not properly represent the true solu
behavior in the neighborhood of these singularities in all cases, though it is imposs
to know definitively in the absence of exact solutions. In this work, we have chosen
suppress only numerical instabilities induced by these singularities; however, compari:
of predicted detonation structures having embedded singularities with the correspon
structures given by a formal steady-state analysis of the model have shown good agree!
Second, the shock resolution property comes with additional computational expens
much effort is required to compute the square-root averages for system variables. Thq
not explored in this study, one could replace the square-root averages with simple arithn
averages. As such, arithmetic averages for complex thermodynamic derivatives coul
easily evaluated circumventing the need to compute the potentially cumbersome aver
defined in this paper. In this case, the shock resolution property will not be maintain
but a more computationally efficient algorithm will result with potentially little sacrifice ir
performance.

APPENDIX A

Derivation of the Eigenvector Expansion Coefficients

The eigenvector expansion coefficientd (j =1, ...,9) [Egs. (3.11)—(3.19)] associ-
ated with the solution of the linear two-phase Riemann problem are derived in this apper
To this end, we choose theé!) such that each component of the vector equation

9
s@) =) alr® (A1)
j=1
is satisfied to withirO[§(g;)?], and such that each component of the vector equation

9
s() :Zot(j))»(j)l’(j) (A.2)
=1

is satisfied to withinO[§( fj)z], where the difference operator is defineddgy) = (e)r —
(o)L . Substituting the expressions foP (j = 1, ..., 9) [Egs. (2.42)—(2.50)]into Eq. (A.1),
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and fully expanding the resulting system of equations give

P17
8(prp1) = a® +a® +a® 4 , (A.3)
p2t2((v2 — v1)2 — ¢2)
8(p11v1) = aPvy + @1+ ¢) + @ (v1 — ¢y)
+ao® prvz (A.4)

p2tp2((v2 — v1)? — c?)’
3(,01(]51(91 + 01/2)) = (x(l)(Hl — CZ/Fl) + d(z)(Hl + v1C1) + Ol(g)(Hl — v1C1)
e p1n1(Hy + vivy — v%/2)

,02¢2((v2 —v)?—¢cf) (A9)

8(p2¢p2) = & +a® +a©, (A.6)

8(p22v2) = aWvy +a® (v + ) + @ (v — C2), (A7)
8(pa2(e2+15/2)) = a®(Hp — &3 /T2) + a® (Hz + v2¢)

+a®@(Hz — v262) + &Pz / (¢2T2), (A.8)

8(p203) = a V2 +a® ¢ + @ + o, (A.9)

3(n) = a®n/(pagp2) + a¥n/(p22) + ®. (A.10)

8(p2p2l) = a®1 +a®1 +a®@. (A.11)

With the assumption thay, is close togg, the left-hand sides of Egs. (A.4), (A.5), (A.7),
(A.8), (A.9), and (A.11) can be approximated by the following expressions valii{3),
respectively:

8(p1¢1v1) ~ v18(p2¢p1) + P1¢p18(V1),
8(prga(en+17/2)) ~ (1 +v7/2)8(p1eh1) + p1hr8(E1) + prcbrvid (va),
8(p2p2v2) ~ V28(p2602) + 26928 (V2),
5(p2g2(€2 +v3/2)) ~ (€2 + v3/2)8(p2th2) + p2628(€2) + path2v28 (v2),
8(p293) ~ $28(p26p2) + p2p28(¢2).
8(p2g2l) ~ p2p28(1) + 18(p2¢2).

Substituting these expressions into Egs. (A.3)—(A.11) and solving the resulting couj
system of equations far™, «@, ..., «© give

,01771

1
a® = 58(p1p1) — ?S(le) a(qsl) (A.12)

3(¢1),  (A13)

01(2) — FS(PNH) + /02_‘1515( )+ ( V2 — V1 ),01771
C1

v2 — (v + Cp) ZC%

®_ L p191 V2 — U1 P ¢
o = 2053(P1¢1) 2, ———d(v) + (vz - Cl)) 2 s,  (Al4)

1
a® = 8(pag2) — 25(P2go), (A.15)
2
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MazjﬁGW2+M@Mﬁ (A16)
a® = 5( Pai2) — p2¢25( 2. (A.17)
o = ,02¢25(¢2) (A.18)
a® =5(n) — ¢ 58(Pag2), (A.19)
a@ = a8 (1) + 18(p2¢2) — ;%5(%2). (A.20)

It is easily checked by directly substituting the expressionsifér [Eq. (2.41)], r()
[Egs. (2.42)—(2.50)], and')’ [Egs. (A.12)—(A.20)]into Eq. (A.2) that the required identities
are satisfied to withit[5( f;)?].

APPENDIX B

Averages for the Approximate Riemann Solution

In this appendlx Egs. (3 (3. 20) (3.43) are solved for the average quamw@s U1, &,
Hl, F1p1¢1’ F1¢1’ F1e1’ ,02¢2, ¢2, vz, 92, H2, F2p2¢2’ F2¢2, erz, i, andl To this end, it
is convenient to first substitute the expressions given by Egs. (3.22)—(3.31) into Eq. (3
and to fully expand the resulting expressions:

aMFy,
Alprgy) =a® +a® +6° — ——— (B.1)
p2g2 [ (D2 — ¥1)2 — &7

A(prprvr) = @V +a® (@14 €) +a? (B — &)
TRy, (B.2)
pag2 (V2 — 91)2 — &
A(prpr(er+v3/2)) =a® (Hy— &/T1) + @@ (Hy + 518 +a® (Hy — 518
_ 51(7)(H~1 + D107 — 5%) ﬁlm

path2[(¥2 — B1)? — &] ®3)
Alpage) = &9 +6 +a©, (B.4)
A(pag2v2) = @D, +a® (T2 + &) + @© (9, — &), (B.5)
A(p2g2(e2+13/2)) = & (Ho — &/T2) +a® (Ho + 1282
FEO(H, — 1,6 — iFf (B.6)
P22l
Ap23) = @D+ 3%+ ®p, +a?, (B.7)
A(n) = &9/ pagpy + & OF /oy +a®), (B.8)

Alpaol) = a1 +a® 1 +a®. (B.9)
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Likewise, we substitute the expressions given by Egs. (3.22)—(3.31) into Eqg. (3.21)
fully expand the resulting expressions:

e e a1,
A(prprvy) = &P +a&@ (1 + E) + @ (51 — &) — T (B.10)
02¢2[(v2 —01)*—C ]
aD2E
A(p1p1v] + Pagpy) = &V07 + a2 (01 + )2 + &P (B — €)° — —— 2 1‘2 ook
p2g2[ (V2 — ¥1)2 — &
(B.11)
A(prprvi(er+vZ /24 Pi/p1))
=&Yy (Hy — & /T1) + &P (@1 + &) (Hy + 518
~ @ (Hy + 010, — 92)F
£ — ey~ gy — B B g )
pag2 [ (T2 — 1) — &
Ap2povp) = @ DT, +a® (V2 + &) +&© (32 — &), (B.13)
(p2¢2v2 + P2¢2) = a3 +a® ([ + 6)% +a®© (v, — &2, (B.14)

A(paova(€r +v3/2+ Pao/p2)) = @Wp(Ho — /1) + & (32 + &) (Ha + D282)

) aDE
+8O (5, — E)(Fyp — pfp) — —222, (B.15)
p2¢2I2

A(pad2vz) = @ o + @ (2 + E) 2 + & © (B — E)do +a@ VT2, (B.16)

Avan) = @ (B2 + &)1/ pagha + &© (B2 — E)F/ pagp2 + @ ®7, (B.17)
A(pagal v2) = @® (02 + E) T +a® @ — &I +a@7,. (B.18)

Equat|ons (B.4)—(B.9) and (B.13)—(B.18) are first solveddapy, ¢o, U, eg, H,, fi, and
[ in Section B.1. Next, Egs. (B.1)—(B.3) and (B. 10) (B 12) are SO|Ved0I¢I1 v1, &,
andH, in Section B.2. Last, expressions f6k e F1¢1, Fu., F2p2¢2= F2¢2, andF,,, are
postulated in Section B.3 to complete the construction of the approximate solution.

B.1. Averages for the Solid Quantities

In this section, Egs. (B.4)—(B.9) and Egs. (B.13)—(B.18) are solved;i/p); b2, Vo, &,
H,, A, andi. It is noted that by substituting the expressionsd?, &, @©, anda®
[Egs. (3.35)—(3.37) and (3.39), respectively] into Egs. (B.4) and (B.8), that the latter t
equations are identically satisfied by any averages we define. Also, it is noted that Egs. |
and (B.13) are identical expressions. Therefore, only Egs. (B.5)—(B.7), (B.9), and (B.1
(B.18) can be considered in determining the required average quantities for the solid pl
To this end, the following relations will prove useful:

a? +a® +a® = A(p202), (B.19)
e . 1
a® +a® = QA(P2¢2), (B.20)
wﬁ—&@::”@ V). (B.21)

[o7)
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First, we rearrange terms in Eq. (B.5) to get
Ap2gpavr) = 52(@? + 6 +a®) + & (@® —a®).

Substituting the expressions given by Egs. (B.19) and (B.21) into the above equation
obtain

A(pagava) = T2A(p20h2) + padalA(v2).
This equation can be solved fps¢, to give

pf}; _ A(p22v2) — V2A(p2¢2)
202 A(v2) ’

(B.22)

Next, we expand the left-hand side of Eq. (B.14) and rearrange terms on the right-hand
of this same equation to get

A(p2g2v3) + A(Pagp) = 13(@@ +a® +a®) + 20,8, (¢® —a®) + &(@® +a®).

Substituting the expressions given by Egs. (B.19)—(B.21) into this equation and simplify
the result gives

A(p2p2v3) = T3 A(p2092) + 2p20022A (v2). (B.23)

Substituting the expression faeg, [Eq. (B.22)] into Eq. (B.23) and rearranging terms
yield the following quadratic equation fop:”

A(p22)T5 — 2A(p2p2v2) T2 + A(pagpov3) = 0.

This equation has two solutions given by

Ao £ \[[A(2don2)]? — Apad) A (p2203)
V2 = .
? A(p2¢2)
Performing the difference operationge) [=(e)r — ()| ] in these solutions and simplify-
ing the result give the following expression for the solution corresponding to positive (
root:

Bp = VP22 V2L — / P2RP2RV2R
VP2 daL — N/ P2r$2R

Likewise, the following expression is obtained for the solution corresponding to the nega
(—) root:

- N P2LP2L VoL 4 A/ P2RrP2RV2R
‘Uz = . (824)

N R
Clearly, to obtain a physically meaningful average we must choose the solution co
sponding to the negative root. Now, substituting this expressiomfontd Eq. (B.22) and
simplifying the result yield

p202 = \/ paL pardaL dar. (B.25)
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Next, we multiply Eq. (B.7) by; and subtract the result from Eq. (B.16) to obtain
A(p23v2) — 2(p203) = oo (@® — a©)
= P22 (V).
This equation can be solved @ to give

A(p203v2) — T2 (p20h3)
262 (v2)

2 =

Since exact expressions for the average&naxgag are known, this equation fgr, reduces
to

3y = P2 P2 P21 +  P2rP2RO2R
2 VoA Pl + VP2RPR

Similarly, we multiply Eq. (B.9) byws3, and subtract the result from Eq. (B.18) to obtain

(B.26)

A(p20p21 v2) — T2A(pagpa]) = 1& (a® —a®)

= padad2A(v2).

Solving this equation fof, substituting in the definitions farand p,¢,, and simplifying
the result gives

P Vo2l + p2rd2rIR
Vo ba + 2rbr

Next, we multiply Eq. (B.8) byz and subtract the result from Eq. (B.17) to obtain

(B.27)

A(van) — TpA(N) = 2% (59 — 5©)
P22
= ﬁA(vz).

Solving this equation fofi, substituting in the definition fow,; and simplifying the result
gives

P2 P2 NR + A/ p2rG2RNL
N R

Now, we consider Egs. (B.6) and (B.15). Expanding the left-hand side of Eq. (B.6)
rearranging terms on the right-hand side of this same equation yield

=

(B.28)

A(p22€) + A(p20p203/2)

~ o aME
—H,(@® +a% +80) - T2 4 5,5 (a® - 3©) - —22.  (B.29)
I p2p2l’2

Substituting the expressions given by Egs. (B.19) and (B.21), and the expressiaff$ for
[Eq. (3.14)] andx®” [Eq. (3.17)] into Eq. (B.29), using the second expression in Eq. (3.4
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to replaceH , in favor of pag,, 72, Pagpo, andé,, and recognizing that the second term or
the left-hand side of Eq. (B.29) is simply the expression given in Eq. (B.23) divided by
we obtain the following expression after performing some simple algebra:

ﬁv
A2262) — B (pahs) = ( Pade _ G
P22 I

1
>A(,02¢2)+ = A(Pag) — (B.30)

Now, upon t usmg the second expression in Eq. (3.41) to ref@aceEq. (B.30) in favor
of p2¢2, P2¢2, FZW, anszez, using the second expressmn in Eq. (3.43) to rep]acm

Eqg. (B.30) in favor Ofp2¢2 and erz, subtracting the terrmqbzA(ez) from both sides of
Eq. (B.30), and simplifying the result, we obtain

A(p262€5) — B A (p2gh2) — papaA(€)

a2 F 2, p22F 2
,02¢2 A(Pop) — =2 AN(pagpp) — —=—2
2 Fa, Fa,

A(pa) — padaA(er).  (B.31)

At this point, a number of assumptions can be made in order to defipe, F»,,, Fa,,,
andé,. Following the analysis of Glaister [18], it is plausible to choose

A(p2d282) — &(path2) — pahar(€2) =0, (B.32)
in which case the right-hand side of Eq. (B.31) reduces to
A(Pop2) = Fa,p,, Ap2gh2) — F2,, A(¢2) — Fa, A(er) = 0. (B.33)
Equation (B.32) can then be solved it

A(p262€2) — padaA(€2)
A(p2¢2)

€ =

In this equation, we replace the temag, with the expression given by Eq. (B.25) and
simplify the result to get

VP2 P2 €1 + A/ P2rO2RER
N

It remains to define the quantiti@&mz, ﬁ2¢2, and Ifzez such that Eqg. (B.33) is identically
satisfied. Definitions for these quantities are postulated in a following section.

Last, we multiply Eq. (B.6) by, subtract the result from Eq. (B.15), and simplify the
resulting expression to get

& = (B.34)

A(pap2va(€2 +v5/2+ Pa/p2)) — T2A (p2tpz(€2 + v3/2))
=GH(a® — @) + 5.85(a® +a®). (B.35)

Upon substituting the expressions given by Egs. (B.20) and (B.21) into Eq. (B.35),
expressing the left-hand side of Eq. (B.35) in terms of the total enthalpy of theldplid
(=& + v3/2 + P»/py), and simplifying the result, we obtain

A(p2¢2v2H2) — TaA(pada(Ha — Pa/p2)) = paaH2A(v2) + T2A(Paga).  (B.36)
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Now, expanding the second term on the left-hand side of this equation and canceling
appropriate terms give

A(p2gav2Ha) — B2A(p2p2H2) = p2poH2A (va).
This equation is solved fdfl , yielding

A(p2g2v2H2) — V2 A(p202H2)

fiy = Ho)
P2¢2A(v2)

Sincepfzgz, q§2, andv are all known quantities, this expression fép reduces to

- H H
Hz=m 2L + /P2rP2R R (B.37)

N I N

In summary, definitions for the solid phase average quan@g& b2, V2, &, H,, i, and
| are given by Egs. (B.25), (B.26), (B.24), (B.34), (B.37), (B.28), and (B.27), respective

B.2. Averages for the Gas Quantities

In this section, Egs. (B.1)-(B.3) and Egs. (B.10)—(B.12) are solvedsfpy, 71, &, and
H1. It is noted, by substituting the expressionsdé? @@, @®, anda” into Eq. (B.1),
that Eq. (B.1) is satisfied by any averages we define; also, Egs. (B.2) and (B.10) are ider
expressions. Therefore, only Egs. (B.2), (B.3), (B.11), and (B.12) can be used to deter
the required averages for the gas phase. In defining these average quantities, the follc

relations will prove useful:
5O L 5@ 4L 50 'Elm
a” +a?+a = A(prg1) — ﬁA(fﬁl), (B.38)
(2 —v1)* — €]
(T2 — 31)%F 1,
&[0, — 12— &

a2 4 a® = E_le(qusl) — ] A(pr), (B.39)
1

~2) _ &) _ P11 B (Vp — 51)|51¢1
* = C1 Alvy) &1 [(52 — P2 — Cﬂ A(). (B.40)

First, we rearrange Eq. (B.2) to get

aN5pFy,

A(prgrvy) = 51 (@ +a® +a®) + &(a? —a®) - ——— —
1P1V1 1( ) 1( ) ,02(1)2[(02—1)1)2—0%]

By substituting the expressions given by Egs. (B.38) and (B.40) and the expressidh for
[EqQ. (3.17)] into the above equation and simplifying the resulting expression [recogniz
thatA(¢2) = —A(¢1)], we obtain

A(p1¢1v1) = D1A(0161) + p1¢1A (V7).

This equation is solved fqs; ¢, to obtain

—  A(p1p1v1) — 11A(p191)

p191 = AloD (B.41)
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Also, expanding the left-hand side of Eq. (B.11) and rearranging the terms on the right-r
side of this same equation give

(p1¢1vl) + A(P1¢1) = Ul( @ + Ol(z) + 05(3)) + 2U1C1( @ _ ~(3))

06(7) F1¢

patp2 (2 — 1) — &

+&@?+a®

Now, substituting in the expressions given by Egs. (B.38)—(B.40) and the expressiéh for

[Eqg. (3.17)] into the above expression, the following result is obtained upon simplifying
A(prp1v?) = B2A(p10h1) + 21171 A (v1). (B.42)

Substituting the expression fpgg [Eq. (B.41)] into this expression and rearranging term
result in a quadratic equation fog:~

VA (p19p1) — 201 A(p11v1) + A(prgrvi) = 0.

This equation has two solutions given by

A(p1g1v1) = \/[A(,O1¢1v1)]2 — A(p191) A (p1p10%)
A(p16p1) '

Once again, the negative root leads to the physically relevant solution

- VPILPILVIL + A/ PIRPIRVIR
‘Ul = . (B43)

VpiLdiL + v p1ré1r
With 9, known, Eg. (B.41) reduces to

P11 = vV P1LPIRP1L P1R- (B.44)

Next, we consider Egs. (B.3) and (B.12). Expanding the left-hand side of Eq. (B.3) ¢
rearranging terms on the right-hand side of this same equation yields

V1 =

oc(l)ﬁi

Iy
a® (H~1 + 0107 — 5%) ﬁla&l
p2g2[ (V2 — 11)2 — &F]

A(p11&1) + A(pr¢1v?/2) = A1 (@@ +a?@ +a®) -

+ Ulcl( @ 5((3)) —

(B.45)

Substituting the expressions given by Egs. (B.38) and (B.40) and the expressia® for
[Eqg. (3. 11)] andx™ [Eq. (3 17)] into Eq. (B.45), using the first expression in Eq. (3.42
to replaceHl in favor of p1¢1, U1, P1¢1, andé;, recognizing that the second term on the
left-hand side of Eq. (B.45) is simply the expression given in Eq. (B.42) divided by 2, a
using the equalityA (¢2) = —A(¢1), we obtain the following expression after performing
some simple algebra:

P &2 1
A(pr9181) — E1A(p11) = (T — —> A(p1¢1) + ) A(Pip1) —

(B.46)
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Now, usmg the first expression in Eq. (3.41) to replétén Eq. (B.46) in favor ofp1¢n,
P1¢1, Flpwl, and Flel, using the first expression in Eq. (3.43) to replagen Eq. (B.46)
in favor of p1¢p1 and F 1., Subtracting the termlqblA(el) from both sides of Eq. (B.46),
and simplifying the result, we obtain

A(prr€1) — E1A(p10h1) — P11 A(er)

F 0161 F
/01¢1 A(Pyby) — ,01¢£ Lt 5 (prby) — Pl(/’il 1ot

ler la la

A(p1) — mprA(er). (B.47)

Here, as was done for the solid-phase analysis, we choose

A(p1¢1€1) — 1(p161) — prgA(er) = O, (B.48)
in which case Eq. (B.47) reduces to
A(Pipy) — Fu,,, Ap1¢1) — Fr, Ady) — Fr,Ader) = 0. (B.49)

Substituting the expression fpig; [Eq. (B.41)] into Eq. (B.48) and solving the resulting
expression fog,; yield

& — Vpidi e + melR_ (B.50)

VP1RAIR + v/ P1ROIR
Similar to the solid-phase analysis, it is necessary to define the quartft'gpig; lf1¢1,
and F1,, such that Eq. (B.49) is identically satisfied. Definitions for these quantities ¢
postulated in the following section.
Last, we multiply Eq. (B.3) by, subtract the result from Eq. (B.12), and simplify the
result to get

A(prprvi(er +v2/2+ Pi/p1)) — 014 (pagha(er + v3/2))

_ 6L (6 - 69) + 5@ (@@ +0) - L T2 (it - )P,
22| (2 — 11)2 — &]

(B.51)

Upon substituting the expressions given by Egs. (B.39) and (B.40), and the expressio
a” [Eq. (B.17)] into Eq. (B.51), reexpressing the left-hand side of Eq. (B.51) in terr
of the total enthalpy of the gad; (=e; + v?/2 + P1/p1), and simplifying the result, we
obtain

A(prprviHy) — D1A(o1¢1(H1 — Pi/p1)) = p1paH1A(vy) + T1A(Pigy).  (B.52)
Expanding the second term on the left-hand side of this equation and canceling like te
gives

A(prprviHr) — D1A(p11HD) = prgiH 1A (vy).

Since;fq?l andv; are known quantities, this equation can be solvedfgto give

N p1di Hi + V/ p1ir¢1rHir
Voidi + Vpirdr

In summary, the required gas phase average quarﬁiﬁs 71, &, andH are given by
Egs. (B.44), (B.43), (B.50), and (B.53), respectively.

Hy =

(B.53)
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B.3. Averages for the Thermodynamic Derivatives

In this section, definitions foF 1 ,,,, F2 ,,,, F1,., F2,,, F,, andF,, are are postulated
such that Eqgs. (B.33) and (B.49) are identically satisfied. These approximations are all
is needed to complete the approximate Riemann solution. For convenience, Egs. (B.33
(B.49) are given below in a slightly rearranged form:

A(Pip1) = F1,,, A(prop1) + F1,, A(dy) + Fr  A(ey), (B.54)
A(Pap) = Fo,, Alp2gp2) + Fo,, Alg2) + Fo, A(e2). (B.55)

Since each of these equations contains the three average derivatives, these averages
be uniquely defined. As such, the methodology proposed by Glaister [18] is adopte
which artificial states are introduced in order to define the averages.

The following approximations foF 1 ,,,, F1,,, andF, are proposed:

~ 1
Fi, = {é_l [F1(01rP1R, 1R, €1R) + Fi(p1RrP1R, P1R, €1L) + F1(p1RO1R, 1L, €1L)

1
+ F1(p1rP1R, P11, €1R)] — 2 [Fi(o1L @1, 1R, €1R) + F1(p1 1L, d11, €IR)

+ Fi(p1 @11, 1R, €11) + Fr(pr o1, d11, €1)] }/A(m(ﬁl), if A(p11) # 0,

(B.56)

~ 1 1

Fi, = {2 [F1(p1r®1R, P1R. €1R) + F1(p1L 1L, P1R, €1L)] + > [Fi(p1rd1R, P1L, €IR)
+ Fi(p1 1L, d10, €10)] }/A(fﬁl), if A(¢1) #0, (B.57)

~ 1

Fi, = {4 [F1(01rP1R, P1R, €1R) + Fi(p1Lé1L, d11, €1R) + F1(p1rO1R, @11, €IR)

1
+ Fi(p1Ld1L, 1R, €1R)] — 2 [Fi(p1ir¢1R. @1, €1L) + F1(01rP1R, P1R. €1L)

+ F1(p1L 010, d1r, €11) + Fi(p1d1, 10, €1)] }/A(el), if A(ey) #O.

(B.58)

Similarly, the following approximations fdf, ,,,, F,,, andF, are proposed:

. 1
F 200 = {4 [F2(p2rP2R, P2R: €2R) + F2(p2rP2R, P2R, €21) + F2(p2rP2R, P21, €21)

1
+ Fo(p2rd2r, ¢2L, €2R)] — 2 [Fa(o2Ld2L, 2R, €2R) + F2(p2Ld2L, doL, E2R)

+ Fo(paLdoL, 2R, €21) + Fa(paLdar, do1, €21)] }/A(szﬁz), if A(pa¢p2) # 0,
(B.59)
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Fo, = { [Fa(p2rd2R, P2R, €2R) + Fa(paL oL, d2r, €21)] + = [F2(02R¢2R, ®21, E2R)
+ Fa(paL 2L, ¢o, €21)] }/A(¢2)7 if A(g2) #0, (B.60)

~ 1

Fo, = {4 [F2(p2r@2r, P2r, €2R) + F2(p21 21, P21, €2r) + Fo(p2rd2R, P21, E2R)

1
+ Fo(paL oL, Por, ©R)] — 2 [F2(p2r@2R, P21, €21) + F2(02r@2R, P2R, €2L)

+ Fa(paL doL, P2r. €21) + Falp2Ld21, da1, €21)] }/A(ez), if A(ep) #0.
(B.61)

In Eqgs. (B.56)—(B.61), the functionB;(p1¢1, ¢1, €1) and Fa(p2¢2, ¢2, €) are obtained
from the thermodynamic state relations for each phase. In the everk ¢pas; ), A(¢i),

or A(g) (i =1, 2) vanishes, we take the appropriate limits of Egs. (B.56)—(B.61) (i.e.,
A(pi¢i) — 0,A(¢i) — 0,0rA(g) — 0)to obtain the following expressions, respectively

z —1[3F1<¢¢ &) + — (1, bir €10
lopr = 8(,0(;5)'01 1, 1R, €1R 8( ¢),011 1R, 1L
JF
, , if A =0,
+ 3 pr )(/01¢>1 $1L, €1R) + 8( ¢ )(,01¢1 oL, elL):| if A(p1¢1)
(B.62)
~ 1[0F oF .
Fi, = 2[ l(le¢1R @1, €1R) + 7(,01|_¢1|_, @1, elL)] if A(¢1) =0, (B.63)
~ 1[0F
Fi, = 2 [(le¢lR 1R, €1) + 7(P1R¢1R @11, €1)
JF oF .
+ a—ell(plL¢lL’ ®1R, €1) + a_ej(plLﬁblLv 1L, el):|, if A(ey) =0, (B.64)
z —3[3F2<¢¢ &)+ 2 (oo, dor €1)
25002 = 4| 9(path2) P22, P2r, 2R 3 (path2) P2¢2, P2R, €21
+ 0P L )} it Apa) = 0
3 oada) 202, P21, 2R 3 pata) 0202, P21, €21 o2¢2) =0,
(B.65)
~ 1[0F; .
Fa, = 2[ (P2rR$2R, P2, €2R) + _(;02L¢2L7 b2, eZL)] if A(g2) =0, (B.66)
~ 1[0F;
Fo, = 2 [(PZR¢2R ¢2r, €2) + 7(/02R¢2R ¢oL, €)

ok Ik .
— — f A = B.67
+ 36 (paLd2L, P2r, &) + 36 (PZL¢2L7¢2L,GZ)} if A(ep) =0, (B.67)

Itis easily checked by direct substitution that the expressions given by Egs. (B.56)—(B
identically satisfy Eqgs. (B.54) and (B.55). Though these definitions for the derivatives apy
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complicated, they can generally be reduced when the equations of state are specifiec
the reduced forms can be directly implemented into a computer algorithm.
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